Solving Capacitated Arc Routing Problems using a transformation to the CVRP

Humberto Longo

Instituto de Informática, Universidade Federal de Goiás, Brazil, longo@inf.ufg.br

Marcus Poggi de Aragão

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Brazil, poggi@inf.puc-rio.br

Eduardo Uchoa

Departamento de Engenharia de Produção, Universidade Federal Fluminense, Brazil, uchoa@producao.uff.br

Abstract

A well known transformation by Pearn, Assad and Golden reduces a Capacitated Arc Routing Problem (CARP) into an equivalent Capacitated Vehicle Routing Problem (CVRP). However, that transformation is regarded as unpractical, since an original instance with r required edges is turned into a CVRP over a complete graph with 3r+1 vertices. We propose a similar transformation that reduces this graph to 2r+1 vertices, with the additional restriction that r edges are already fixed to 1. Using a recent branch-and-cut-and-price algorithm for the CVRP, we observed that it yields an effective way of attacking the CARP, being significantly better than the exact methods created specifically for that problem. Computational experiments obtained improved lower bounds for almost all open instances from the literature. Several such instances could be solved to optimality.

Keywords: CARP, CVRP, Routing, Mixed-Integer Programming.

Resumo

O problema de roteamento de veículos em um grafo com demandas nas arestas (CARP - Capacitated Arc Routing Problem) pode ser transformado em um problema equivalente de roteamento com as demandas nos vértices (CVRP - Capacitated Vehicle Routing Problem), usando-se a transformação proposta por Pearn, Assad e Golden. Contudo, a utilização dessa transformação é praticamente inviável, uma vez que uma instância do CARP com r arestas com demandas é transformada em um CVRP com 3r+1 vértices. Nós propomos uma transformação similar que reduz esse grafo a 2r+1 vértices, com a restrição adicional de que r arestas são previamente fixadas em 1. Usando-se um algoritmo recente de branch-and-cut-and-price para o CVRP, essa nova transformação mostrou-se eficaz na resolução do CARP, sendo significativamente melhor do que os métodos exatos criados especificamente para esse problema. As experiências computacionais melhoraram os limites inferiores no valor da solução ótima para quase todas as instâncias testadas. Muitas dessas instâncias da literatura puderam, pela primeira vez, ser resolvidas até a otimalidade.

Palavras Chaves: CARP, CVRP, Roteamento de veículos, Programação Linear Inteira.

1 Introduction

The Capacitated Arc Routing Problem (CARP) can be defined as follows. Suppose a connected undirected graph G = (V, E), costs $c : E \to Z^+$, demands $w : E \to Z^+$, vehicle capacity Q and a distinguished depot vertex labelled 0. Define $R = \{e \in E \mid w(e) > 0\}$ as the set of required edges. Let F be a set of closed walks that start and end at the depot, where edges in a walk can be either *serviced* or *deadheaded*. Set F is a feasible CARP solution if:

- Each required edge is serviced by exactly one walk in F;
- The sum of demands of the serviced edges in each walk in F does not exceed the vehicle capacity.

We want to find a solution minimizing the sum of the costs of the walks. It can be noted that $\sum_{e \in R} c(e)$ is a trivial lower bound on the cost of an optimal solution, the remaining costs in a solution are the costs of the deadheaded edges. In the remaining of this article, let r denote the number of edges in R.

This problem was first presented by Golden and Wong in 1981 ([14]) and has been used to model many situations, including street garbage collection, postal delivery, routing of electric meter readers, etc [11].

The CARP is stronley NP-hard. Several heuristics have been proposed for it. Among them we can cite Golden et al. [4], Chapleau et al. [9], Ulusoy [27], Pearn [23, 24] and Hertz et al. [15]. Many other heuristics are described in [2] [12] and [11].

On the other hand, as far as we know, the only exact algorithms for it are the branch-and-bound algorithms by Hirabayashi, Saruwatari and Nishida [16], Kiuchi et al. [17], Welz [28], and Belenguer and Benavent [5]. Even using the fast machines available today, those algorithms can only solve small instances, with less than 30 required edges.

Algorithms yielding lower bounds for the CARP are presented by Golden and Wong [14], Assad et al. [3], Pearn [22], Benavent et al. [7], Amberg and Voß[1] and Wøhlk [30]. The current best bounds are those obtained by a cutting plane algorithm by Belenguer and Benavent [6]. Those bounds are much better than previous ones and matched the best heuristic solutions on 47 out of 87 instances tested from the literature. The largest instance thus solved had 97 required edges. The algorithm uses cuts over z variables, where z(e) represents the number of times edge e is deadheaded. However, those cuts are not enough to give a formulation for the CARP, they are only a relaxation since they allow some some integer solutions that do not correspond to feasible solutions. This rules out the use of those bounds in a consistent exact algorithm because no one knows how to determine in polynomial time whether an integer solution z is feasible or not. In other words, that bound can at most prove that a given heuristic CARP solution is indeed optimal, and only on instances without duality gap.

The approach proposed in this work, reducing the CARP to a CVRP that is given as input to a branch-and-cut-and-price algorithm, not only gives lower bounds even better than those by [6], it is already an exact algorithm that can solve many open instances from the literature.

2 Pearn, Assad and Golden's Transformation

Pearn, Assad and Golden [25] proposed a transformation of the CARP to the CVRP that replaces each edge of R by three vertices. An edge (i, j) in R is associated to vertices s_{ij} and s_{ji} , referred as side vertices, and to m_{ij} , the middle vertex. A CVRP instance is defined on the complete undirected graph H = (N, A), where

$$N = \bigcup_{(i,j) \in R} \{s_{ij}, s_{ji}, m_{ji}\} \bigcup \{0\}.$$

Vertex 0 is defined as the depot. The edge costs $d:A\to Z^+$ and the demands $q:N\to Z^+$ are defined as follows.

$$d(s_{ij}, s_{kl}) = \begin{cases} \frac{1}{4}(c_{ij} + c_{kl}) + dist(i, k) & \text{if } (i, j) \neq (k, l) \\ 0 & \text{if } (i, j) = (k, l) \end{cases}$$

$$d(0, s_{ij}) = \frac{1}{4}c_{ij} + dist(0, i)$$

$$d(m_{ij}, v) = \begin{cases} \frac{1}{4}c_{ij} & \text{if } v = s_{ij} \text{ or } s_{ji} \\ \infty & \text{otherwise,} \end{cases}$$

where dist(i, j) is the value of the shortest path from vertex i to vertex j in G, calculated using the costs c. The new demands are

$$q(s_{ij}) = q(m_{ij}) = q(s_{ji}) = \frac{1}{3} w(i, j).$$

The resulting instance has 3r + 1 vertices. Since the current best CVRP codes [8, 20, 29, 26, 13] can only cope consistently with instances up to 100 vertices, the practical use of that transformation is limited.

3 New Transformation

We observed that, in the above transformation, the construction around the middle vertex (m_{ij}) has only the purpose of obliging a CVRP route to pass through the three vertices corresponding to (i,j) in sequence (either $s_{ij} \to m_{ij} \to s_{ji}$ or $s_{ji} \to m_{ij} \to s_{ij}$). Our idea to avoid the middle vertices is simply to fix r edges to 1 in the transformed CVRP instance. The new transformation is described as follows.

An edge (i, j) in R is now associated only to vertices s_{ij} and s_{ji} . The resulting CVRP instance is defined on the complete undirected graph H = (N, A), where

$$N = \bigcup_{(i,j)\in R} \{s_{ij}, s_{ji}\} \bigcup \{0\}.$$

Vertex 0 is defined as the depot. The edge costs $d:A\to Z^+$ and the demands $q:N\to Z^+$ are defined as follows.

$$d(s_{ij}, s_{kl}) = \begin{cases} 0 & \text{if } (i, j) = (k, l) \\ c(i, j) & \text{if } (i, j) = (l, k) \\ dist(i, k) & \text{if } (i, j) \neq (k, l), (i, j) \neq (l, k) \end{cases}$$
$$d(0, s_{ij}) = dist(0, i)$$

where dist(i, j) have the same meaning as in the previous section. The new demands are

$$q(s_{ij}) = q(s_{ji}) = \frac{1}{2}.w(i,j).$$

Finally, we fix all edges $\{(s_{ij}, s_{ji}) | (i, j) \in R\}$ to 1, meaning that we only accept CVRP solutions where s_{ij} and s_{ji} are visited in sequence, either $s_{ij} \to s_{ji}$ or $s_{ji} \to s_{ij}$.

We give as example of the transformation an instance with 4 vertices and 5 edges (all required), where $V = \{0, 1, 2, 3\}$ and edge costs are c(0, 1) = 2, c(0, 2) = 4, c(1, 2) = 1, c(1, 3) = 3 and c(2, 3) = 5. The transformed instance with 11 vertices is shown in Figure 1. The corresponding d function is on Table 1.

The important point is that the fixing of r edges to 1 is not an additional burden to most CVRP algorithms, quite to the contrary, they easy a lot the solution of a transformed instance. Although the transformation results in an instance where |N| = 2.r + 1, the mandatory fixing of edges can make an algorithm to perform almost as if on an instance with |N| = r + 1. We address this point in the next section.

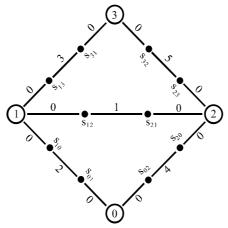


Figure 1: Transformation example.

0	s_{01}	s_{10}	s_{02}	s_{20}	s_{12}	s_{21}	s_{13}	s_{31}	s_{23}	s_{32}
0	0	2	0	3	2	3	2	5	3	5
s_{01}	-	2	0	3	2	3	2	5	3	5
s_{10}		-	2	1	0	1	0	3	1	3
s_{02}			-	4	2	3	2	5	3	5
s_{20}				-	1	0	1	4	0	4
s_{12}					-	1	0	3	1	3
s_{21}						-	1	4	0	4
s_{13}							-	3	1	3
s_{31}								-	4	0
s_{23}									-	5
s_{32}										-

Table 1: Intervertices distances for the example.

4 Formulation and Algorithm

The goal of this section is to present how a CVRP formulation can be slightly specialized to instances coming from the CARP, in order to take advantage of having r edges that must belong to every solution.

The Explicit Master formulation for the CVRP, as presented in Fukasawa et al. [13], combines a column generation formulation with the classical formulation on edge variables. Let H = (N, A), d, q and Q define a CVRP instance having vertex 0 as the depot and the remaining vertices in N as clients.

This formulation follows.

$$EM-CVRP: \begin{cases} & \min & \sum\limits_{e=(u,v)\in A} d(e).x_e \\ & \sup\limits_{e\in\delta(\{u\})} x_e & = 2 & \forall u\in N\setminus\{0\} & (1) \\ & \sum\limits_{e\in\delta(\{0\})} x_e & \geq 2\cdot K^* & (2) \\ & \sum\limits_{e\in\delta(S)} x_e & \geq 2\cdot k(S) & \forall S\subseteq N\setminus\{0\} & (3) \\ & x_e & \leq 1 & \forall e\in A\setminus\delta(\{0\}) & (4) \\ & \sum\limits_{l=1}^p q_l^e \cdot \lambda_l & - & x_e & = 0 & \forall e\in A \\ & \lambda_l & \geq 0 & \forall l\in\{1,\dots,p\} \end{cases}.$$

- Variable x_e represents the number of times that edge e is traversed by a vehicle. This variable can assume value 2 if e is adjacent to the depot, corresponding to a route with a single client.
- A q-route is a walk that starts at the depot, traverses a sequence of clients with total demand at most Q, and returns to the depot. Each variable λ_l is associated to one of the p possible q-routes. Let q_l^e be the number of times edge e appears in the l-th q-route.
- Degree constraints (1) states that each client vertex is served by exactly one vehicle. Constraint (2) requires that at least K^* vehicles leave and return to the depot. This number, representing the minimum number of vehicles to service all clients, is calculated by solving a Bin-Packing Problem. The rounded capacity constraints stated in (3) use $k(S) = \lceil \sum_{u \in S} q(u)/Q \rceil$ as a lower bound on the minimum number of vehicles necessary to service the clients in set $S \subset N$. Constraints (5) oblige x to be a linear combination of q-routes. The integrality constraints complete the formulation.

Now we proceed with the simplifications that come from the fact that H = (N, A), d, q and Q comes from a CARP instance, as defined in the previous section, and that all edges $\{(s_{ij}, s_{ji}) | (i, j) \in R\}$ are fixed to 1.

• Since all vehicles appearing in a CARP solution must service at least one edge in R and that each edge is represented as two vertices in H, we can restrict all x variables to be less or equal to 1.

- We can restrict the q-paths to those that visit vertices s_{ij} and s_{ji} in sequence, either $s_{ij} \to s_{ji}$ or $s_{ji} \to s_{ij}$. This eliminates many λ variables. Pricing q-paths over a complete graph with n vertices takes $O(n^2.Q)$ time. The above restriction does not change that complexity.
- Half of the constraints (1) can be eliminated. The redefinition of the q-paths and the constraints (5) guarantee that if the degree constraint corresponding to s_{ij} is satisfied, the degree constraint corresponding to s_{ji} will also be satisfied. This observation have a crucial impact on the performance of the resulting branch-and-cut-and-price, because the size of LPs and the convergence of the column generation part of the algorithm depends a lot on the number of such constraints. In other words, in those aspects the algorithm behaves as if it were solving an instance with r clients and not 2r.
- It is well-known (see, for instance [20, 21]) that when separating capacity cuts, edges (u, v) having value 1 in the fractional solution should be contracted. This happens because if a capacity cut over a set S having $(u, v) \in \delta(S)$ is violated, a capacity cut over set $S \cup \{u, v\}$ is also violated. This means that the corresponding separation algorithm always work on a graph with at most r + 1 vertices.

This specialized formulation, called EM - CARP, is now presented.

$$EM-CARP: \begin{cases} & \min & \sum\limits_{e=(u,v)\in A} d(e).x_e \\ & \sup_{e=(u,v)\in A} x_e \\ & \sum\limits_{e\in\delta(\{s_{ij}\})} x_e \\ & \sum\limits_{e\in\delta(\{0\})} x_e \\ & \sum\limits_{e\in\delta(S)} x_e \\ & \sum\limits_{e\in$$

A more compact formulation, the one actually used in the algorithm, is obtained if every occurrence of x_e in (0), (1'), (2), (3) is replaced by its equivalent given by (5). Relaxing the integrality constraints, a Linear Program, referred DWM - CARP, is obtained. The solution

of that LP gives a valid lower bound.

5 Computational Results

Our CARP code is basically an adaptation of the implementation of a robust branch-and-cutand-price algorithm for the CVRP described in [13]. Apart from a new pricing algorithm to restrict the q-paths to those visiting vertices s_{ij} and s_{ji} in sequence, we only changed the linear programming part to be like indicated in DWM-CARP. Tests were conducted on a Pentium IV, 2.4 GHz, with 1GB of RAM.

In the computational experiment we applied our algorithm to the instances of the datasets kshs, gdb, bccm and egl, available at http://www.uv.es/~belengue/carp.html. These datasets were originally used in Kiuchi et al. [17] (kshs), DeArmon [10] and Golden et al. [4](gdb), Belenguer et al. [7](bccm), and Li [18] and Li and Eglese [19](egl), respectively. Except for the bccm instances, that are named 1.A, 1.B, ..., 10D, the remaining three sets have their names starting with the names of the sets.

Sets kshs, qdb and bccm were randomly generated following different construction patterns, varying the underlying graph, the vehicle capacity or the capacities itself. In these three sets of instances all edges are required, i.e. R equals E. The fourth set, eql, was constructed using as underlying graph regions of the road network of the county of Lancashire (UK). Costs and demands are proportional to the length of the edges, except for non-required edges that have zero demand.

In the first two tables we compare the lower bound given by the root node of our branchand-cut-and-price algorithm (the solution of DWM - CARP) with the best known lower bounds of all instances from sets egl (Table 2) and bccm (Table 3). The columns of both tables list the name of the instance and its characteristics, the number of vertices |V|, the number of required edges r, the minimum number of vehicles K^* to cover the demands, the best known upper bound UB, the previous best lower bound (all of them obtained in [6]), the lower bound given by our transformation Our LB, and the corresponding CPU time RootTime in seconds. Lower bounds in bold indicate a matching with the best upper bound.

The results show that our lower bounds are equal or better than the previous best on almost all instances. On only two instances, 2.B and 5.B, our bound was one unit smaller. It can be observed that our bounds are strictly better on all instances where $K^* > 5$, indicating that its quality is less sensitive to the use of many vehicles. The new bounds are also strictly better on all egl instances.

The last table presents the instances where we could run the complete branch-and-cut-and-price algorithm, solving them to optimality. The columns of this table have the same first four columns of the previous two tables. They are followed by columns with the optimal value of the instance OPT, the CPU time of our algorithm at the root node $ROOT\ Time$, the number of nodes in the branch-and-bound tree $Tree\ Nodes$, and the CPU time spent in the column generation algorithm $CG\ Time$, the cut generation procedures $Cut\ Time$ and total CPU time $Total\ Time$. The optimal values that are in bold indicate that optimality was proven for the first time. This was the case for 10 instances, the last one open from set kshs, the last three from set gdb, four from bccm and two from set egl. On one instance (gdb13) the optimal solution found improved upon the previous best heuristic solution.

Overall, the CPU times where reasonably small, which gives hope to closing some more of the remaining open instances on sets *bccm* and *egl* instances in the near future. Moreover, we believe that the lower bounds can be further improved with the addition of cuts that take into account the specific structure of the CARP, for example, the ones proposed in Belenguer and Benavent [6].

References

- [1] A. Amberg and S. Voß. A hierarquical relaxations lower bound for the capacitated arc routing problem. In *Proceedings of the 35th Anual Hawaii International Conference on System Sciences*, 2002.
- [2] A. A. Assad and B. L. Golden. Arc Routing Methods and Applications. In M. G. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, *Network Routing*, volume 8 of *Handbooks in Operations Research and Management Science*, chapter 5, pages 375–483. Elsevier, 1995.
- [3] A. A. Assad, B. L. Golden, and W. Pearn. The Capacitated Chinese Postman Problem: Lower Bounds and Solvable Cases. Am. J. Math. Management Sci, 7(1,2):63–88, 1987.
- [4] E. K. Bakes, J. S. DeArmon, and B. L. Golden. Computational Experiments with Algorithms for a Class of Routing Problems. *Computers and Operations Research*, 10(1):47–59, 1983.
- [5] J. M. Belenguer and E. Benavent. The capacitated arc routing problem: Valid inequalities and facets. *Computational Optimization & Applications*, 10(2):165–187, 1998.
- [6] J.M. Belenguer and E. Benavent. A Cutting Plane Algorithm for the Capacitated Arc Routing Problem. *Computers & Operations Research*, pages 705–728, 2003.
- [7] E. Benavent, V. Campos, A. Corberan, and E. Mota. The Capacitated Arc Routing Problem: Lower Bounds. *Networks*, 22:669–690, 1992.
- [8] U. Blasum and W. Hochstättler. Application of the branch and cut method to the vehicle routing problem. Technical Report ZPR2000-386, Zentrum fur Angewandte Informatik Köln, 2000.

- [9] L. Chapleau, J. A. Ferland, G. Lapalme, and J.-M. Rousseau. A parallel insert method for the capacitated arc routing problem. *Operations Research Letters*, 3(2):95–99, 1984.
- [10] J. S. DeArmon. A Comparison of Heuristics for the Capacitated Chinese Postman Problem. Master's thesis, University of Maryland, Colledge Park, MD, 1981.
- [11] M. Dror. Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers, 2000.
- [12] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems II: The Rural Postman Problem. *Operations Research*, 43(3):339–414, 1995.
- [13] R. Fukasawa, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R. F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. In *Proceedings of the X IPCO*, Lecture Notes in Computer Science, New York, June 2004. To appear.
- [14] B. L. Golden and R. T. Wong. Capacitated arc routing problems. *Networks*, 11:305–315, 1981.
- [15] A. Hertz, G. Laporte, and M. Mittaz. A Tabu Search Heuristic for the Capacitated Arc Routing Problem. *Operations Research*, 48(1):129–135, 2000.
- [16] R. Hirabayashi, N. Nishida, and Y. Saruwatari. Node duplication lower bounds for the capacitated arc routing problems. *Journal of the Operations Research Society of Japan*, 35(2):119–133, 1992.
- [17] M. Kiuchi, Y. Shinano, R. Hirabayashi, and Y. Saruwatari. An exact algorithm for the Capacitated Arc Routing Problem using Parallel Branch and Bound method. In *Abstracts of the 1995 Spring National Conference of the Oper. Res. Soc. of Japan*, pages 28–29, 1995. in Japanese.
- [18] L. Y. O. Li. Vehicle Routing for Winter Gritting. PhD thesis, Dept. of Management Science, Lancaster University, 1992.
- [19] L. Y. O. Li and R. W. Eglese. An Interactive Algorithm for Vehicle Routeing for Winter-Gritting. *Journal of the Operational Research Society*, 47:217–228, 1996.
- [20] J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem. *Mathematical Programming*, 2003. To appear.
- [21] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In P. Toth and D. Vigo, editors, *The Vehicle Routing Problem*, chapter 3, pages 53–84. SIAM, 2002.
- [22] W.-L Pearn. New lower bounds for the capacitated arc routing problem. *Networks*, 18:181–191, 1988.
- [23] W.-L Pearn. Approximate Solutions for the Capacitated Arc Routing Problem. Computers & Operations Research, 16(6):589–600, 1989.

- [24] W.-L Pearn. Argument-Insert Algorithms for the Capacitated Arc Routing Problem. Computers & Operations Research, 18(2):189–198, 1991.
- [25] W. L. Pearn, A. Assad, and B. L. Golden. Transforming Arc Routing into Node Routing Problems. *Computers & Operations Research*, 14(4):285–288, 1987.
- [26] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter Jr. On the capacitated vehicle routing problem. *Mathematical Programming*, 94:343–359, 2003.
- [27] G. Ulusoy. The fleet size and mix problem for capacitated arc routing. *European Journal of Operational Research*, 22(3):329–337, 1985.
- [28] S. A. Welz. Optimal solutions for the capacitated arc routing problem using integer programming. PhD thesis, Department of QT and OM, University of Cincinnati, 1994.
- [29] K.M. Wenger. Generic Cut Generation Methods for Routing Problems. PhD thesis, Institute of Computer Science, University of Heidelberg, 2003.
- [30] Sanne W ϕ hlk. New Lower Bound for the Capacitated Arc Routing Problem. Preprint PP-2003-15, University of Southern Denmark, IMADA Department of Mathematics and Computer Science, 2003.

Instance	V	E	r	K*	UB	Prev.	Our	Root
						LB	LB	Time (s)
egl-e1-a	77	98	51	5	3548	3515	3548	144.203
egl-e1-b	77	98	51	7	4498	4436	4468	52.594
egl-e1-c	77	98	51	10	5595	5453	5542	46.063
egl-e2-a	77	98	72	7	5018	4994	5011	521.219
egl-e2-b	77	98	72	10	6340	6249	6280	198.531
egl-e2-c	77	98	72	14	8415	8114	8234	66.875
egl-e3-a	77	98	87	8	5898	5869	5898	924.859
egl-e3-b	77	98	87	12	7822	7646	7697	375.609
egl-e3-c	77	98	87	17	10433	10019	10163	142.125
egl-e4-a	77	98	98	9	6461	6372	6395	1171.580
egl-e4-b	77	98	98	14	9021	8809	8884	418.984
egl-e4-c	77	98	98	19	11779	11276	11427	202.688
egl-s1-a	140	190	75	7	5018	4992	5014	750.391
egl-s1-b	140	190	75	10	6435	6201	6379	204.500
egl-s1-c	140	190	75	14	8518	8310	8480	66.984
egl-s2-a	140	190	147	14	9995	9780	9824	3260.250
egl-s2-b	140	190	147	20	13174	12886	12968	896.706
egl-s2-c	140	190	147	27	16795	16221	16353	408.878
egl-s3-a	140	190	159	15	10296	10025	10143	1680.371
egl-s3-b	140	190	159	22	14053	13554	13616	1639.530
egl-s3-c	140	190	159	29	17297	16969	17100	635.292
egl-s4-a	140	190	190	19	12442	12027	12143	14318.100
egl-s4-b	140	190	190	27	16531	15933	16093	2761.130
egl-s4-c	140	190	190	35	20832	20179	20375	1119.980
Average ga	ар %					2.40	1.45	
Maximum gap % 4.27 3.11								

Table 2: Lower bound comparison for the egl instances.

1.A 24 39 2 247 247 247 54.561 1.B 24 39 3 247 247 247 54.561 1.C 24 39 8 319 309 312 771.882 2.A 24 34 2 298 298 298 79.404 2.B 24 34 3 330 330 329 169.010 2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 105 127.590 3.B 24 35 3 111 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 534 1178.370 4.C 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 4 340 340 340 340 340 340 340 340 340	Instance	V	r	K*	UB	Prev.	Our	Root	
1.B 24 39 8 319 309 312 771.882 2.A 24 34 2 298 298 298 79.404 2.B 24 34 3 330 329 169.010 2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 3 522 522 522 2475.280 4.B 41 69 5 550 550 550 824.599 4.D 41 69 5 550 550 824.599 4.D						LB	LB	Time (s)	
1.C 24 39 8 319 309 312 771.882 2.A 24 34 2 298 298 298 79.404 2.B 24 34 3 330 329 169.010 2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 514 1178.370 4.C 41 69 5 550 550 550 824.599	1.A	24	39	2	247	247	247	98.278	
2.A 24 34 2 298 298 298 79.404 2.B 24 34 3 330 329 169.010 2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 3 522 522 522 2475.280 4.B 41 69 5 550 550 550 824.599 4.D 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576	1.B	24	39	3	247	247	247	54.561	
2.B 24 34 3 330 329 169.010 2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 534 1178.370 4.C 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 666 629.417 5.B 34 65 5 617 612 613 274.772	1.C	24	39	8	319	309	312	771.882	
2.C 24 34 8 528 526 528 0.969 3.A 24 35 2 105 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 1178.370 4.C 41 69 5 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A	2.A	24	34	2	298	298	298	79.404	
3.A 24 35 2 105 105 127.590 3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 1178.370 4.C 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A	2.B	24	34	3	330	330	329	169.010	
3.B 24 35 3 111 111 111 134.339 3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 1178.370 4.C 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B	2.C	24	34	8	528	526	528	0.969	
3.C 24 35 7 162 161 161 3.156 4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 513 1178.370 4.C 41 69 5 550 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254	3.A	24	35	2	105	105	105	127.590	
4.A 41 69 3 522 522 522 2475.280 4.B 41 69 4 534 534 1178.370 4.C 41 69 5 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40	3.B	24	35	3	111	111	111	134.339	
4.B 41 69 4 534 534 534 1178.370 4.C 41 69 5 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7	3.C	24	35	7	162	161	161	3.156	
4.C 41 69 5 550 550 824.599 4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 330 158.667 6.B 31 50 4 340 383 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754	4.A	41	69	3	522	$\bf 522$	$\bf 522$	2475.280	
4.D 41 69 9 652 644 648 76.576 5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426	4.B	41	69	4	534	$\bf 534$	534	1178.370	
5.A 34 65 3 566 566 566 629.417 5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885	$4.\mathrm{C}$	41	69	5	550	550	550	824.599	
5.B 34 65 4 589 589 588 388.144 5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863	4.D	41	69	9	652	644	648	76.576	
5.C 34 65 5 617 612 613 274.772 5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50	5.A	34	65	3	566	566	566	629.417	
5.D 34 65 9 724 714 716 62.779 6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 <t< td=""><td>5.B</td><td>34</td><td>65</td><td>4</td><td>589</td><td>589</td><td>588</td><td>388.144</td></t<>	5.B	34	65	4	589	589	588	388.144	
6.A 31 50 3 330 330 158.667 6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632	5.C	34	65	5	617	612	613	274.772	
6.B 31 50 4 340 338 337 169.254 6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap %	5.D	34	65	9	724	714	716	62.779	
6.C 31 50 10 424 418 420 119.371 7.A 40 66 3 382 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap %	6.A	31	50	3	330	330	330	158.667	
7.A 40 66 3 382 382 319.349 7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 5 655 655 655 5078.570	6.B	31	50	4	340	338	337	169.254	
7.B 40 66 4 386 386 386 163.754 7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655	6.C	31	50	10	424	418	420	119.371	
7.C 40 66 9 437 436 436 607.637 8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 </td <td>7.A</td> <td>40</td> <td>66</td> <td>3</td> <td>382</td> <td>382</td> <td>382</td> <td>319.349</td>	7.A	40	66	3	382	382	382	319.349	
8.A 30 63 3 522 522 522 359.426 8.B 30 63 4 531 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	7.B	40	66	4	386	386	386	163.754	
8.B 30 63 4 531 531 168.885 8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap %	7.C	40	66	9	437	436	436	607.637	
8.C 30 63 9 663 653 654 376.863 9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap %	8.A	30	63	3	522	$\bf 522$	$\bf 522$	359.426	
9.A 50 92 3 450 450 450 17722.600 9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	8.B	30	63	4	531	531	531	168.885	
9.B 50 92 4 453 453 453 4520.030 9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	8.C	30	63	9	663	653	654	376.863	
9.C 50 92 5 459 459 459 1460.890 9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	9.A	50	92	3	450	450	450	17722.600	
9.D 50 92 10 518 509 512 305.158 10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	9.B	50	92	4	453	453	453	4520.030	
10.A 50 97 3 637 637 637 13336.600 10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	9.C	50	92	5	459	459	459	1460.890	
10.B 50 97 4 645 645 645 13719.400 10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	9.D	50	92	10	518	509	512	305.158	
10.C 50 97 5 655 655 655 5078.570 10.D 50 97 10 739 732 734 473.632 Average gap % 0.41 0.32	10.A	50	97	3	637	637	637	13336.600	
10.D 50 97 10 739 732 734 473.632 Average gap $\%$ 0.41 0.32	10.B	50	97	4	645	645	645	13719.400	
Average gap $\%$ 0.41 0.32	10.C	50	97	5	655	655	655	5078.570	
	10.D	50	97	10	739	732	734	473.632	
	Average ga	ap %		0.41	0.32				

Table 3: Lower bound comparison for the bccm instances.

Instance	V	r	K*	Opt	Root	Tree Nodes	GC Time (g)	Cut	Total
					Time (s)		Time (s)	Time (s)	Time (s)
kshs1	8	15	4	14661	0.719	2	0.656	0.172	0.828
kshs2	10	15	4	9863	0.375	2	0.391	0.047	0.453
kshs3	6	15	4	9320	0.688	4	0.766	0.219	1.016
kshs4	8	15	4	11498	0.828	3	0.531	0.391	0.953
kshs5	8	15	3	10957	0.703	1	0.656	0.047	0.703
kshs6	9	15	3	10197	0.734	3	1.391	0.078	1.484
gdb1	12	22	5	316	1.859	10	1.359	1.672	3.125
gdb2	12	26	6	339	0.531	5	1.125	0.141	1.359
gdb3	12	22	5	275	0.406	5	0.531	0.234	0.844
gdb4	11	19	4	287	0.281	8	0.625	0.125	0.813
gdb5	13	26	6	377	0.891	2	0.422	0.578	1.016
gdb6	12	22	5	298	0.250	1	0.203	0.047	0.250
gdb7	12	22	5	325	0.625	10	1.203	0.422	1.750
gdb8	27	46	10	348	2.750	28	30.922	0.859	32.469
gdb9	27	51	10	303	12.016	7	22.141	8.313	30.969
gdb10	12	25	4	275	1.063	10	5.500	0.656	6.344
gdb11	22	45	5	395	19.438	29	1351.130	9.688	1364.630
gdb12	13	23	7	458	0.703	27	4.422	0.406	5.219
gdb13	10	28	6	536	1.125	145	88.063	1.484	93.031
gdb14	7	21	5	100	0.156	1	0.156	0	0.156
gdb15	7	21	4	58	0.781	9	3.094	0.531	3.750
gdb16	8	28	5	127	2.313	19	24.406	1.563	26.422
gdb17	8	28	5	91	0.953	23	33.328	0.703	34.828
gdb18	9	36	5	164	5.578	16	53.641	2.172	56.391
gdb19	8	11	3	55	0.063	1	0.047	0	0.063
gdb20	11	22	4	121	1.375	7	3.719	0.656	4.500
gdb21	11	33	6	156	3.969	13	17.781	2.734	20.859
gdb22	11	44	8	200	6.406	29	105.109	5.156	112.078
gdb23	11	55	10	233	9.547	30	136.438	6.625	145.453
1C	24	39	8	319	774.906	6119	7802.220	830.156	8916.78
2B	24	34	3	330	169.484	14	581.656	86.938	671.250
2C	24	34	8	528	0.938	1	0.891	0.047	0.953
3C	24	35	7	162	3.141	363	314.719	4.438	328.891
$7\mathrm{C}$	31	66	9	437	39.781	3	54.609	9.500	131.969
egl-e1-a	77	51	5	3548	143.844	1	128.391	15.1719	143.875
egl-e3-a	77	87	8	5898	923.656	1	831.188	91.7969	923.766

Table 4: Results of the BCP algorithm for the kshs, gdb, bccm and egl instances.