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Abstract

A k-bit Hamming prefix code is a binary code with the following property: for

any codeword x and any prefix y of another codeword, both x and y having the same

length, the Hamming distance between x and y is at least k. Given an alphabet

A = [a1, . . . , an] with corresponding probabilities [p1, . . . , pn], the k-bit Hamming

prefix code problem is to find a k-bit Hamming prefix code for A with minimum

average codeword length
∑

n

i=1
piℓi, where ℓi is the length of the codeword assigned

to ai. In this paper, we propose an approximation algorithm for the 2-bit Hamming

prefix code problem. Our algorithm spends O(n log3 n) time to calculate a 2-bit

Hamming prefix code with an additive error of at most O(log log log n) bits with

respect to the entropy H = −
∑

n

i=1
pi log

2
pi.

1 Introduction

A k-bit Hamming prefix code is a binary code with the following property: for any

codeword x and any prefix y of another codeword, both x and y having the same length,

the Hamming distance between x and y is at least k. Given an alphabet A = [a1, . . . , an]

with corresponding probabilities [p1, . . . , pn], the k-bit Hamming prefix code problem

is to find a k-bit Hamming prefix code for A with minimum average codeword length
∑n

i=1 piℓi, where ℓi is the length of the codeword assigned to ai. It is worth to mention

that the well-known prefix code problem is a special case of the previous problem, where

k = 1. For the sake of simplicity, let us refer to 2-bit Hamming prefix codes only as

Hamming prefix codes.

It is well known that the optimum solution for the prefix code problem can be

obtained by the Huffman’s algorithm [4] in O(n log n) time. A prefix code constructed

by the Huffman’s algorithm is usually referred to as a Huffman code. On the other hand,

Hamming devised algorithms for the construction of fixed-length error detecting codes

[3]. The Hamming prefix code problem has been proposed by Hamming in the same
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book as a way to combine both the compression provided by Huffman codes and the

error protection provided by Hamming codes. However, we found only one paper in the

literature addressing the problem [10], where the authors propose a method for the 3-bit

Hamming prefix code problem (refereed to as ECCC problem). The proposed method

achieves a relatively small loss of compression with respect to the Huffman code in some

practical experiments. However, the authors report that they have no good criterion to

determine the codeword lengths used in the method. Moreover, no worst-case bound

on the compression loss is provided. In [8], Pinto et. al. give a polynomial algorithm

for finding an optimal prefix code where all codewords have even parities. The authors

are motivated by the Hamming prefix code problem but the resulting code is much less

effective for detecting errors. In a Hamming prefix code, one can detect one bit changed

before finishing the decode of the first corrupted codeword. Codes with even codeword

parities do not necessarily have this property. As far as we know, no polynomial (exact

or approximate) algorithm and no hardness proof has been found for the Hamming

prefix code problem.

Similarly to conventional prefix codes, any Hamming prefix code can be represented

by a full binary tree. Such a tree has two types of leaves: the codeword leaves, which

represent the codewords, and the error leaves, which represent binary prefixes that are

forbidden and interpreted as errors. In this representation, each codeword length ℓi

is given by the level of the corresponding codeword leaf in the tree. As a result, the

average codeword length of a code is equal to the weighted external path length of the

corresponding tree, where each leaf is weighted with the probability of the corresponding

symbol (error leaves have zero weights). Throughout this paper, we refer to these trees

as Hamming trees. Moreover, full binary trees that represent conventional prefix codes

are referred to as code trees. Finally, we use the term code-and-error tree to denote any

full binary tree with both codeword leaves and error leaves. Observe that a Hamming

tree is a special case of a code-and-error tree.

In this paper, we propose an approximation algorithm for the Hamming prefix code

problem. Our algorithm runs in O(n log3 n) time. It obtains a Hamming prefix code

whose average codeword length is at most O(log log log n) bits larger than the entropy.

We observe that one must increase the codeword length of a fixed-length code by at

least 1 bit to achieve a Hamming distance of 2 bits. For a Hamming distance of 3

bits, this increase must be at least ⌈log2 log2 n⌉ bits. For variable-length codes, our

result gives an upper bound on the average codeword length increase that is between
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Relatórios de Pesquisa em Engenharia de Produção V. 6 n. 20Relatórios de Pesquisa em Engenharia de Produção V. 6 n. 20Relatórios de Pesquisa em Engenharia de Produção V. 6 n. 20

O(1) and O(log log n). Moreover, it is worth to mention that our algorithm is suitable

for compression schemes where the alphabet can be arbitrarily large and the average

codeword length is not too small such as the word-based text compression [7]. For

example, if the average codeword length grows as any ω(log log log n) function of n,

then our approximation bound implies in an approximation ratio of 1 + o(1).

This paper is organized as follows. In section 2, we introduce a new technique to

rearrange a code-and-error tree so that it becomes a Hamming tree. In section 3, we

describe and analyze our approximation algorithm. In section 4, we summarize our

conclusions. Throughout this paper, let us use log x to denote log2 x.

2 Spreading leaves

In this section, we introduce a general procedure for transforming a code-and-error tree

into a Hamming tree. Basically, this procedure iterates for each level in the input code-

and-error tree rearranging the codeword leaves, error leaves and internal nodes in such

a way that the Hamming distance between a codeword leaf and an internal node or

another codeword leaf is at least two. Let us refer to this procedure as Spread.

Figure 1 illustrates the Spread procedure. In Figure 1.(a), we represent a code-and-

error tree, where codeword leaves are rectangles, error leaves are gray filled circles, and

internal nodes are white filled circles. Moreover, the subtrees rooted at level four are

represented by triangles.

Figure 1.(b) shows the tree of figure 1.(b) after the first iteration of the Spread

procedure. In this iteration, the procedure chooses the codeword 000 for the only

codeword leaf x found at this level. Hence, it moves x to the leftmost position at this

level. Then, the procedure moves the three error leaves to the positions that correspond

to codewords whose Hamming distances with respect to x are one. These forbidden

codewords are 100, 010 and 001. As result the remaining nodes are arranged at the

remaining positions.

In the second iteration, the Spread procedure performs a similar step for level four.

However, this level introduces the following difficulties:

(a) not all codewords are available;

(b) more than one leaf shall be arranged at the same level.

In this case, it is worth to mention that we do not need to arrange ℓ error leaves
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positions codewords signatures nodes

1 0,11,0 000 internal

2 0,11,1 001 internal

3 1,01,0 110 error

4 1,01,1 111 codeword

5 1,10,0 110 error

6 1,10,1 111 codeword

7 1,11,0 100 internal

8 1,11,1 101 error

Table 1: The available codewords at level four in the tree of Figure 1.(c), the corre-

sponding codeword sections and signatures.

After calculating the signatures, the Spread procedure chooses one signature for the

codeword leaves. As a result, all codeword leaves are moved to the positions that have

the chosen signature. In the example of table 1, the first and the last columns of this

table shows a sequence number for the codeword positions and the type of node moved

to this position, respectively. Observe that the chosen signature is 111 in this case.

Finally, the Spread procedure computes the Hamming distance between the chosen

signature g and the other signatures. The error leaves are moved to the positions that

correspond to signatures whose Hamming distance to g is one. The internal nodes are

moved to the remaining positions. In the example of table 1, since g = 111, the signa-

tures 011, 101 and 110 shall be reserved to error leaves. These signatures correspond to

the positions 3, 5 and 8.

Now, one can observe that the first iteration of the Spread procedure corresponds

to dividing the available codewords into sections of one bit each. The criterion used to

divide codewords is a subject of Section 3.

Next, we formalize the Spread procedure. Let T be a code-and-error tree. At

the ith iteration of the procedure, we denote by ℓi the level of T being processed, for

i = 1, . . . , L. At this level, the available codewords are denoted by xi
1, . . . , x

i
αi

. Each

codeword xi
j can be written as the concatenation of qi sections of bits. For that, we use

the notation xi
j = si,j

1 + · · ·+ si,j
qi

, where |si,1
k | = · · · = |si,αi

k | = ℓk
i , for all i = 1, . . . , r and

k = 1, . . . , qi. Observe that ℓi =
∑qi

k=1 ℓk
i . Finally, we use π(x) and d(x, y) to denote

the parity of the bit string x and the Hamming distance between the two bit strings x
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and y, respectively. At the ith iteration, the Spread procedure performs the following

five steps:

Step 1: Choose the section lengths ℓ1
i , . . . , ℓ

qi

i for level ℓi;

Step 2: Choose a signature gi = gi
1 + · · · + gi

qi
for the codeword leaves, where gi

k is a

single bit for k = 1, . . . , qi.

Step 3: Move each codeword leaf to a distinct position that corresponds to a codeword

xi
j such that π(si,j

k ) = gi
k for k = 1, . . . , qi.

Step 4: Move each error leaf to a distinct position that corresponds to a codeword xi
j

such that π(si,j
k ) = ḡk for k = 1, . . . , qi, where ḡ = ḡ1 + · · ·+ ḡqi

is a signature such

that d(gi, ḡ) = 1.

Step 5: Move the internal nodes the positions that correspond to the remaining signa-

tures.

For a given iteration i of the previous procedure, let us refer to the positions men-

tioned in Step 3 (resp. Step 4) as the codeword (resp. error) positions. The correctness

of the Spread procedure is a consequence of the following proposition.

Proposition 1 If the Hamming distance between two codewords of xi
j and xi

j′ is one,

then the Hamming distance between the corresponding two signatures is also one.

Proof: Since xi
j and xi

j′ differ by exactly one bit, exactly one section of xi
j and one

section of xi
j′ have different parities.

Observe that, by the previous proposition, the Spread procedure places an error leaf

in all positions whose Hamming distances from a codeword leaf is one.

2.1 Choosing the section lengths

A natural question that arises when looking at the Spread procedure is how to choose

the sections lengths in each iteration so that codeword leaves, error leaves and internal

nodes can be placed accordingly. Here, a remarkable observation is that the previous

procedure can be more flexible than the previous description suggests. In fact, one

can place some internal nodes at codeword positions if there are more such positions

than codeword leaves. Moreover, error leaves can be placed anywhere provided that all

error positions are already filled. As a result, a necessary and sufficient condition for an
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iteration of the Spread procedure to succeed is having both enough error leaves to fill

all error positions and enough codeword positions to accommodate all codeword leaves.

The following theorem gives an upper bound on the number of error leaves required

to successfully apply the Spread procedure on a code-and-error tree. This upper bound

will be useful when we analyze the additive error of our algorithm in the next section.

Moreover, the theorem proof describes a method that may be used in the Step 1 of the

Spread procedure to choose the section lengths.

Theorem 1 At the ith iteration of the Spread procedure, let mi and bi be the number of

codeword leaves and the number of error leaves at level ℓi of the input tree T , respectively.

If bi ≥ (ℓi − ⌈log mi⌉)(2mi − 1) then there is a valid choice of section lengths for this

iteration.

Proof: The valid choice of section lengths can be obtained through the following method.

Start with only one section whose length is ℓi. On each iteration, choose for the codeword

leaves the signature that gives more available positions. If the number of available

positions is larger than 2mi − 1, than choose an arbitrary codeword section larger than

1 and split it into two sections of arbitrary lengths. Then, go to the next iteration.

Otherwise, if the number of available positions is not larger than 2mi − 1 then stop. In

this case, the current section length and the currently chosen signature are used.

Next, we show that we have both at least mi codeword positions and at most (ℓi −

⌈log mi⌉)(2mi − 1) error positions, which is enough to prove this theorem.

First, let us consider the set of available positions that corresponds to each signature

on each iteration of the previous method. Let ηj and η∗ be the maximum set cardinality

among all such sets before the jth iteration and after the last iteration, respectively.

Observe that each such set is split into two subsets after each iteration. As a result, we

have ηj+1 ≥ ηj/2 for each iteration j except the last one. Since the previous method

only performs a split when ηj ≥ 2mi, we obtain that η∗ ≥ mi.

Now, observe that η∗ ≤ 2ℓi−qi , where qi is the number of chosen codeword sections.

This is true because each available codeword has ℓi bits from which qi bits are used to

match the section parities. As a result, we must have qi ≤ ℓi − ⌈log mi⌉. Since we have

exactly qi sets of error positions, each one with cardinality not greater that η∗ ≤ 2mi−1,

we have at most (ℓ
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3 The Approximation Algorithm

In this section, we describe our approximation algorithm for the Hamming prefix code

problem. Basically, our approach is to raise the leaves of an usual prefix code tree so

that sufficient error leaves can be inserted. Thus, let us refer to this algorithm as the

Raising algorithm.

3.1 Description

The Raising algorithm performs the following three steps:

Step 1: Construct a full binary tree T1 with n leaves whose height is at most L =

2⌈log n⌉.

Step 2: Obtain an expanded tree T2 from T1 with n2 > n leaves and set n2 − n leaves

as error leaves.

Step 3: Apply the Spread procedure on T2 to obtain a Hamming tree T3.

In Step 1, the Raising algorithm uses a modified version of the BRCI algorithm [6]

to construct an L-restricted binary tree T1 whose weighted external path length exceeds

the entropy by at most 1 + 1/n. In Step 2, for each level ℓ in T1, the Raising algorithm

raises the leaves from level ℓ to a higher level in such a way there is enough room to

place the necessary error leaves without affecting the other leaves of T1. Let T2 be the

resulting tree. Also, let us refer to this step as the Raising Step. In the next subsection,

we give more details on the Raising Step. Finally, in Step 3, we apply the Spread

procedure on T2 to obtain a Hamming tree T3.

3.2 Constructing a Length-restricted Prefix Code

The construction of length restricted prefix codes has been addressed by several re-

searchers [5, 9, 6]. However, none of the algorithms found in the literature serves for

our purposes. In order to prove our approximation bound, we need to construct a

height-restricted full binary tree where the probability of any node at a given level ℓ is

bounded above by K/2ℓ for some constant K. We devise such a construction by slightly

modifying the BRCI algorithm proposed in [6]. The complete description of this method

has been moved to Appendix A. However, the following two propositions are useful for

our purposes.
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Proposition 2 The probability of a node at level ℓ of T̄ is bounded above by 1/2ℓ−2.

Proof: See Appendix A.

Proposition 3 The weighted external path length of T̄ is at most H+1+1/2L−⌈log n⌉−2.

Proof: See Appendix A.

3.3 The Raising Step

Here, we describe the method used by the Raising Step to move all leaves from a given

level ℓ of T1 and insert the corresponding error leaves. Basically, this step consists in

replacing each leaf by complete binary tree with height ℓ̄. Let mℓ be the number of

leaves at level ℓ in T1. After the previous transformation, mℓ2
ℓ̄ leaves are available

at level ℓ + ℓ̄. Then, the method sets mℓ of these leaves as codeword leaves and the

remaining mℓ(2
ℓ̄−1) leaves as error leaves. The following theorem gives a suitable value

for ℓ̄ as a function of both mℓ and ℓ that satisfies the condition of Theorem 1.

Theorem 2 If ℓ ≥ ⌈log mℓ⌉ and ℓ̄ = ⌈log(ℓ − ⌈log mℓ⌉ + 2)⌉ + 2, then

mℓ(2
ℓ̄ − 1) ≥ (ℓ + ℓ̄ − ⌈log mℓ⌉)(2mℓ − 1). (1)

Proof: We divide it into two cases:

Case 1: ℓ − ⌈log mℓ⌉ < 4,

Case 2: ℓ − ⌈log mℓ⌉ ≥ 4,

We analyze Case 1 for all possible values of ℓ−⌈log mℓ⌉. The table bellow summarizes

this analysis, where the third and the fourth columns show the corresponding expressions

for the left-hand side of (1) and the right-hand side of (1), respectively.

ℓ − ⌈log mℓ⌉ ℓ̄ LHS of (1) RHS of (1)

0 3 7mℓ 6mℓ − 3

1 4 15mℓ 10mℓ − 5

2 4 15mℓ 12mℓ − 6

3 5 31mℓ 16mℓ − 8
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Observe in the previous table that (1) is satisfied for all rows.

For Case 2, we have that the left-hand side of (1) is bounded bellow by

2mℓ(ℓ − ⌈log mℓ⌉) + 2mℓ(ℓ − ⌈log mℓ⌉ + 1.5) (2)

and the right-hand side of (1) is bounded above by

2mℓ(ℓ − ⌈log mℓ⌉) + 2mℓℓ̄. (3)

Observe that (2) is not smaller than (3) whenever ℓ̄ ≤ ℓ − ⌈log mℓ⌉ + 1.5, which is

true whenever ℓ − ⌈log mℓ⌉ ≥ 4. From this it follows that (1) is satisfied for Case 2.

Observe that, depending on the value of mℓ, we may have a leaf x1 at a higher

level than another left x2 in T1, and the same leaf x1 at a lower level than x2 in T2.

In this case, the Spread procedure applied in the Step 3 of the Raising algorithm will

process x1 before x2. Moreover, exchanging x1 and x2 in T2 might improve the external

weighted path length of the resulting tree in this case. However, we do not consider this

improvement in our analysis. Finally, we have the case where x1 and x2 are at different

levels in T1 but at the same level in T2. For this case, we observe that, if the condition

of Theorem 1 is true independently for two sets of leaves at the same level, then it is

also true for the union of these two sets. Hence, it is safe to process both x1 and x2 at

the same iteration of the Spread procedure.

3.4 Analysis

In this section, we analyze both the time complexity of the Raising algorithm and the

compression loss of the Hamming prefix code generated by it.

The following proposition gives an upper bound on the time complexity of the Rais-

ing algorithm.

Proposition 4 The Raising algorithm runs in O(n log3 n) time.

Proof: The Step 1 runs in O(n) time. As a result of this step, we have a sorted

list of leaf levels. Then, in Step 2, each sublist of mℓ equal leaf levels in the input

generates mℓ2
ℓ̄ levels for both error and codeword leaves in the output, where ℓ̄ =

O(log ℓ) = O(log log n) according to Theorem 2. Hence, the total number of leaves in

T2 is O(n log n). Since T2 is a full binary tree, it also has O(n log n) internal nodes.

As a result, T2 can be constructed in O(n log n) time. Finally, in Step 3, we apply
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the Spread procedure on T2. In each iteration of this procedure, we must choose the

sections lengths for the nodes at the current level ℓ of T2 using the method described

in the proof of Theorem 1. In each iteration of this method, we traverse the whole

tree until level ℓ counting the number of available codewords that correspond to each

signature for the current section lengths. This counting operation takes O(n log n) time

in the worst case. Since the method given by Theorem 1 performs O(log n) iterations,

it runs in O(n log2 n) time. Moreover, the Spread procedure spends O(n log3 n) time

executing the previous method O(log n) times (once in each iteration). The remaining

operations performed by the Spread procedure are dominated by the choice of section

lengths since they spend only O(n log n) time. As a result, the overall time complexity

of the Raising algorithm is O(n log3 n).

Now, let us analyze the redundancy of the Hamming prefix code generated by the

Raising algorithm.

Theorem 3 The average codeword length of a Hamming prefix code generated by the

Raising algorithm is at most

log(log⌈log n⌉ + 5) + 4 + 4/n (4)

bits larger than the entropy H.

Proof: Let p̄ℓ be the sum of the probabilities of all leaves at level ℓ of T1. By Theorem

2, the compression loss of the code generated by the Raising algorithm with respect to

the prefix code constructed by the modified BRCI algorithm is given by

L∑

ℓ=1

p̄ℓ (⌈log(ℓ − ⌈log mℓ⌉ + 2)⌉ + 2) .

Moreover, by Proposition 3, the compression loss of the modified BRCI with respect

to H is at most 1 + 4/n, for L = 2⌈log n⌉. This gives the following upper bound on the

overall compression loss δ with respect to H.

δ ≤
L∑

ℓ=1

p̄ℓ (⌈log(ℓ − ⌈log mℓ⌉ + 2)⌉) + 3 + 4/n.

On the other hand, by Proposition 2, we have p̄ℓ ≤ mℓ/2ℓ−2. As a result, we obtain

that − log p̄ℓ ≥ ℓ − ⌈log mℓ⌉ − 2. By combining this inequality with the previous upper

bound on δ, we obtain that
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δ ≤
L∑

ℓ=1

p̄ℓ log(− log p̄ℓ + 4) + 4 + 4/n. (5)

Now, let us consider the function f(p̄ℓ) = p̄ℓ log(− log p̄ℓ + 4). From elementary

calculus, we can conclude that this function has a decreasing derivative (for p̄ℓ > 0). As

a result, we have that 2f((x + y)/2) > f(x) + f(y). Hence, we maximize
∑L

ℓ=1 f(p̄ℓ)

subject to
∑L

ℓ=1 p̄ℓ = 1, when p̄1 = · · · = p̄L = 1/L. By replacing each p̄ℓ by 1/(2⌈log n⌉)

in the right-hand side of (5), we obtain (4).

4 Conclusions

In this section, we give some conclusions on the results of this paper.

Table 2 shows the additional bits required to achieve each Hamming distance for

each type of code. This table gives an intuition of how our result compares to other

classical error detection codes.

Codeword length Hamming distance Added bits

Fixed 2 1

Variable 2 O(log log log n)

Fixed 3 ⌈log log n⌉

Table 2: Additional bits required to achieve each Hamming distance.

In addition, we remark that our theoretical upper bound on the additive error of

the Raising algorithm is less than eight bits for any practical purpose. For example, we

have an upper bound of 6.9993 bits for n = 106 and 7.0706 bits for n = 109. Moreover,

an additive error equal to this upper bound can be acceptable in some applications. For

example, for the word-based text compression scheme [7] mentioned in the introduction,

the Zipf’s law [2] is accepted as an estimation of the symbol probability distribution.

This estimation leads to H ≈ 18.9515 for n = 109, in which case the Raising algorithm

achieves an approximation ratio of 1.3731.

Next, we point out that the O(n log3 n) time complexity of the Raising algorithm

is suitable to deal with large alphabets. For example, a Θ(n2) algorithm would be

prohibitive for n = 109.

Finally, we observe that this work may have interesting extensions. A similar ap-

proach might be applicable to devise approximation algorithms for the k-bit Hamming
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prefix code problem, for k > 2. Moreover, an implementation of the Raising algo-

rithm with some practical improvements might generate codes with additive errors much

smaller than the worst-case upper bound.
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A The Modified BRCI Algorithm

Before describing the modified BRCI algorithm, we shall discuss some details of the

original one. This algorithm constructs an L-restricted binary tree by rearranging some

selected nodes in a Huffman tree T . First, it removes from T all leaves at levels not

smaller than L. Then, it raises the subtree rooted at the node x with the smallest

probability at level ℓ = L− ⌈log n⌉ − 1 to level ℓ + 1. Finally, it inserts in T a complete

binary tree T ′ containing all removed leaves so that the root of T ′ becomes sibling of x.

Since the height of T ′ is bounded above by ⌈log n⌉, the level of each inserted leaf in the

resulting tree T̄ is at most ℓ + 1 + ⌈log n⌉ = L.

(a)

L - 1

(b) (C)

T’

T

x

T’x

y

T

Figure 2: The BRCI algorithm.

Figure 2 illustrates a BRCI construction for L = 6 and n = 15. Figure 2.(a) shows

an example of a Huffman tree T . Figure 2.(b) represents both the tree T after the

removal of the leaves at levels higher than L − 1 and the complete binary tree T ′ built

with the removed leaves. Observe in this figure that the node x is chosen at level one

and that the height of T ′ is exactly ⌈log n⌉ = 4. Finally, Figure 2.(c) shows the resulting

tree T̄ obtained after raising the node x and inserting T ′. Observe in this figure the T̄

is not a full binary tree because the node y has only one child. In this case, we shall

remove the node y and connected its child as a child of its parent. Let us assume that

the BRCI algorithm always transforms the resulting binary tree into a full binary tree

by removing internal nodes with single children as described before.

In order to describe our construction, we recall some well-known results of the in-

formation theory field. The prefix code problem can be written in terms of the Kraft-
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McMillen inequality
∑n

i=1 2−ℓi ≤ 1 as follows. Find integer codeword lengths ℓ1, . . . , ℓn

that minimize
∑n

i=1 piℓi subject to the Kraft-McMillen inequality. Given the optimal

solution for the previous problem, a corresponding prefix code (or full binary tree) can

be constructed in a linear time [1]. Observe that the Kraft-McMillen inequality is sat-

isfied with equality in this case. Moreover, if we relax the integrality constraint in the

previous problem, then the optimal solution is given by ℓi = − log pi, for i = 1, . . . , n. In

this case, observe that the average codeword length is the entropy H = −
∑n

i=1 pi log pi.

Hence, an immediate way to find integer codeword lengths whose average is at most

one bit larger than H is setting ℓi = ⌈− log pi⌉. Our construction uses the previous idea

to replace the Huffman tree T used by the BRCI algorithm. Instead, we construct a

full binary tree based on the previous codeword lengths. In order to satisfy the Kraft-

McMillen inequality with equality, we use the following procedure. While there is a

value of ℓj such that ∆ = 1−
∑n

i=1 2−ℓi ≥ 2−ℓj , decrease ℓj by ⌊log(∆/2−ℓj +1)⌋. After

that, we use the method proposed in [1] to construct a full binary tree whose leaves are

at the levels ℓ1, . . . , ℓn. Let T̂ be this tree.

Now, let us assume that the tree T̄ has been constructed by the BRCI algorithm by

rearranging the nodes of T̂ instead of T . Observe that the overall construction runs in

O(n) time. Next, we give the proofs for both Propositions 2 and 3.

Proof of Proposition 2: By construction, the level ℓ of a leaf of T̂ with probability

p is not greater than − log p + 1. Hence, we have ℓ ≤ 1/2ℓ−1. Now, we claim that the

previous bound is valid for both leaves and internal nodes of T̂ . Next, we prove this

claim by induction on n. For n = 1, the claim is true because T̂ has no internal node.

Now, let us assume that the claim is true for n < n′. For n = n′, choose an internal

node y at a maximum level ℓ among all internal nodes of T̂ . Since the two children of y

are necessarily leaves, their probabilities are bounded above by 1/2ℓ each. As a result,

the probability of y is bounded above by 1/2ℓ−1. Now, remove the two children of y

from T̂ . In this case, y becomes a leaf with the same probability as before, and we have

n = n′− 1. Moreover, the probabilities of all other nodes remain unchanged. Hence, by

inductive hypothesis, the probability bound is also valid for all other internal nodes of

T̂ .

Since the BRCI algorithm increases the level of each node in T̂ by at most one, we

obtain that the probability of a node at level ℓ in T̄ is bounded above by 1/2ℓ−2

Proof of Proposition 3: By the previous discussion, the weighted external path
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length of T̂ is bounded above by H + 1. The BRCI algorithm increases by one the level

some the leaves in the subtree of T̂ rooted at x, which is at level ℓ = L − ⌈log n⌉ − 1.

All other leaves have their levels either maintained or reduced. Hence, the increase

in the weighted external path length of T̂ due to the BRCI algorithm is at most the

probability of x. By the proof of proposition 2, this probability is bounded above by

1/2ℓ−1 = 1/2L−⌈log n⌉−2.
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