
A Node-Flow Model for 1D Stock Cutting:

Robust Branch-Cut-and-Price

Gleb Belov

University of Dresden

Adam N. Letchford

Lancaster University

Eduardo Uchoa

Universidade Federal Fluminense

April 10, 2005

1 Introduction

Branch-and-Cut-and-Price (BCP) algorithms are branch-and-bound algo-
rithms where both row generation (separation) and column generation (pric-
ing) are performed. Following [12], we say that such an algorithm is ro-
bust when the separation and pricing subproblems are guaranteed to remain
tractable during its execution. Robust BCP algorithms have been devised
recently for a variety of problems, having been particularly successful for
the Capacitated Vehicle Routing Problem (CVRP) [7] and the Capacitated
Minimum Spanning Tree Problem (CMSTP) [6], for which many standard
test instances have been solved for the first time.

In this paper we present a robust BCP algorithm for the 1-D Cutting
Stock Problem (CSP). In the CSP, which is strongly NP-hard, one is given a
set of item types numbered {1, . . . , n}, positive integer weights l1, . . . , ln and
order demands b1, . . . , bn of each item type, and a bin capacity C. One wants
to determine how to pack the items into the minimum possible number of
bins. A special case of the CSP is the Bin Packing Problem (BPP) where
the order demand of each item type is exactly one.

Two contributions make this robust BCP algorithm possible:

• A formulation suffers from variable symmetry when a single solution
can be represented in many alternative ways by only permutating vari-
able indices. It is not possible to construct effective BCP algorithms

1

over such formulations, adding cuts or branching most probably only
changes a fractional solution into another equivalent fractional solu-
tion. Belov and Scheithauer [2] have presented an effective BCP for the
CSP over the asymmetric classic Gilmore-Gomory formulation. How-
ever, this BCP is non-robust. The pricing subproblem starts as an in-
teger knapsack problem, with a pseudo-polynomial complexity bound
of O(nC). As cuts are added and branchings performed, the pric-
ing is turned into a complex problem for which no pseudo-polynomial
complexity guarantee exists.

The only class of formulations that allow pricing of pseudo-polynomial
complexity after branching are position-indexed formulations [3], par-
ticularly the arc-flow formulation of V. de Carvalho. We present an-
other formulation of this kind that avoids the symmetries found in
many known CSP formulations other than Gilmore-Gomory [3]. It is
shown that an arbitrary number of cuts or branchings over the vari-
ables from the new formulation can be used in a BCP algorithm with-
out ever making the pricing harder than a capacitated shortest path
problem having pseudo-polynomial complexity of O(n2C).

• We introduce a family of valid inequalities for the new formulation,
which we call capacity cuts. A special kind of these cuts was already
used by Vanderbeck [17]. The bound obtained by solving the continu-
ous relaxation of the Gilmore-Golmory formulation, which we denote
by LBGG, was the best CSP bound known. It is computable in pseudo-
polynomial time using the ellipsoid algorithm. Now, by solving this
relaxation and adding the capacity cuts provided by heuristics, one
gets a bound at least as good as LBGG, also computable in pseudo-
polynomial time. The addition of capacity cuts can be enough to close
the duality gaps in some very hard instances, namely those without
the Integer Round-UP (IRUP) property, as shown in our experiments.

Throughout the paper, we use the notation V = {1, . . . , n} and, for any
S ⊆ V , l(S) =

∑
i∈S libi. Moreover, we call the quantity l(V)/C the trivial

lower bound and denote it by LBT . The value obtained by rounding LBT

up to the nearest integer will be called the rounded trivial lower bound and
denoted by LBRT . In the same way, the rounding up of LBGG is denoted
as LBRGG. Finally, OPT denotes the number of bins used in the optimal

2

solution.
In the next section we introduce the classic Gilmore-Gomory formulation

and discuss some of its properties. Then we describe the new model and
branching on its variables. Then we discuss the capacity cuts, the pricing
problem, and computational results.

2 The Gilmore-Gomory formulation

A thorough review of formulations for the CSP has been given by de Car-
valho [3]. The following formulation is usually attributed to Kantorovich.
Let U be an upper bound on the number of bins needed. For i = 1, . . . , n and
k = 1, . . . , U , define the integer variable xk

i , which represents the number
of times item i is packed into the bin numbered k. Also, for j = 1, . . . , U ,
define the binary variable yk, which takes the value 1 if and only if bin k is
used. Then the problem is:

Minimise
∑U

k=1 yk

Subject to:
∑U

k=1 xk
i = bi (i = 1, . . . , n), (1a)

∑n
i=1 lix

k
i ≤ Cyk (k = 1, . . . , U), (1b)

xk
i ∈ Z+ (i = 1, . . . , n; k = 1, . . . , U), (1c)

yk ∈ {0, 1}. (k = 1, . . . , U). (1d)

This formulation in itself is of little use for solving the CSP: its linear pro-
gramming relaxation only yields the trivial lower bound LBT and it contains
a lot of symmetry. But the Kantorovich formulation can be viewed as the
starting point of a very successful way of attacking the CSP. By apply-
ing Dantzig-Wolfe decomposition [5], keeping constraints (1a) in the master
and sending constraints (1b) to the subproblem, one obtains the classical
Gilmore-Gomory formulation [8, 9]:

Minimise
∑q

k=1 λk

Subject to:
∑q

k=1 aikλk = bi (i = 1, . . . , n), (2a)

λk ∈ Z+ (k = 1, . . . , q). (2b)

In this formulation, a variable λk is defined for every possible feasible packing
of a single bin, called a cutting pattern. The feasible packings are indexed

3

from 1 to q. The constant aik represents the number of times item i appears
in packing k.

The exponential number of variables in this formulation makes column
generation necessary. The pricing subproblem is a bounded integer knap-
sack problem. For most practical CSP instances, one can solve the linear
programming relaxation of the formulation quickly, obtaining the bound
LBGG. This bound is remarkably tight. For the majority of CSP instances,
OPT − LBGG < 1, or, equivalently, LBRGG = OPT . Indeed, for a long
time it was conjectured that this was always the case, until counterexamples
were found by Marcotte [11]. A modified conjecture, that OPT −LBGG < 2
for all instances, was made by Scheithauer & Terno [16] and is still open.
The worst instance known at the time of writing, due to Rietz [13], has
OPT − LBGG = 6/5. Concerning the worst-case bounds on the gap, Rietz
& Scheithauer [14] proved that OPT−LBGG < max{2, (n+2)/4} and Chan
et al. [4] proved that OPT/LBRGG ≤ 4/3.

Instances for which OPT −LBGG < 1 holds are known as integer round-
up or IRUP instances. Many IRUP instances are fairly easy to solve, once
LBGG has been computed, one only has to find an optimal packing by
heuristic methods. When one has a non-IRUP instance, or an IRUP instance
for which an optimal packing is not easily obtained by heuristics, one must
do further work (e.g., branch or add cutting planes) in order to solve the
problem.

It is well known that defining branches or cutting planes directly on
the λ variables destroys the knapsack structure of the subproblem, making
pricing unpredictably harder. Moreover, although the model has no symme-
try in terms of variables, it has some “internal” symmetry. Namely, there
may be lots of similar patterns and thus lots of optimal solutions. In this
case, branching on single patterns may be ineffective and heavily depend on
their choice. Furthermore, the search tree becomes unbalanced. Therefore,
many authors have developed branching rules and cutting planes based on
different formulations, cf. [18, 3]. None of those alternative formulations is
theoretically satisfactory, in the sense of completely avoiding symmetry and
still guaranteeing a tractable pricing.

4

3 The node-flow formulation

We start with a formulation of the BPP, i.e. we assume the demands be equal
to one. This formulation is best understood in terms of a certain directed
graph, defined as follows. Introduce two dummy items 0 and n + 1. The
directed graph, denoted by G = (V +, A), has vertex set V + = {0, . . . , n+1}
and an arc (i, j) for every 0 ≤ i < j ≤ n + 1. The weight of each item i

is interpreted as a weight on the vertex i. Then, each feasible packing of
a single bin corresponds to a directed path in G from 0 to n + 1, passing
through a set of vertices whose total weight does not exceed C. A feasible
solution to the entire BPP then corresponds to a set of such paths, such
that each vertex in V lies in exactly one path.

This leads us to define a binary variable xij for every 0 ≤ i < j ≤ n + 1,
which takes the value 1 if and only if the corresponding arc is used. Note
that, when 1 ≤ i < j ≤ n, xij = 1 means that i and j are in the same bin,
but no other item k, i < k < j, is also in that bin. The formulation is then:

Minimise
∑

j∈V x0j

Subject to:
∑

(i,j)∈δ−(j) xij = 1 (∀j ∈ V), (3a)
∑

(i,j)∈δ+(i) xij = 1 (∀i ∈ V), (3b)
∑

(i,j)∈δ−(S) xij ≥ l(S)/C (∀S ⊆ V), (3c)

xij ∈ {0, 1} (∀(i, j) ∈ A). (3d)

The above formulation is quite similar to the one usually employed on the
Asymmetric Capacitated Vehicle Routing Problem. It is also an aggregated
version of a formulation given by Ben Amor [1] for the BPP. The constraints
(3a) and (3b) are called in-degree and out-degree equations, respectively.
The constraints (3c) will be called fractional capacity inequalities. It should
be noted that this formulation is completely asymmetric, in the sense that
there is a one-to-one correspondence between feasible solutions to the BPP
and feasible solutions to the integer program. We propose to call this model
a node-flow model because both order demands are fulfilled and material is
consumed by flow into the nodes. Compare this name to the arc-flow model
of V. de Carvalho [3]: there, both processes take place in the arcs assigned
to specific positions in the bin and to specific items.

We extend this formulation to the CSP, by allowing xij , i < j to be

5

integer and introducing additional integer variables xii, i ∈ V , to represent
similar items occurring more than once in a bin. Then, we require constraints
(3a) and (3b) to have right-hand side bi, i ∈ V . Let us give an example.
Consider an instance with n = 2, l1 = 3, l2 = 4, b1 = 5, b2 = 3 and C = 8.
An optimal packing using four bins is: one bin with two items of type 2, one
bin with one item of each type and two more bins, each one with two items
of type 1. This solution is represented as x01 = 3, x02 = 1, x11 = 2, x12 =
1, x13 = 2, x22 = 1, and x23 = 2.

Although every packing has a unique representation in terms of x vari-
ables, not every solution x respecting (3a)-(3d) can be decomposed into
paths corresponding to a feasible packing. Therefore, this is not yet a valid
CSP formulation. This can be amended by combining it with the Gilmore-
Gomory formulation. Consider this formulation on both λ and x variables:

Minimise
∑

j∈V x0j

Subject to:
∑

(i,j)∈δ−(j) xij = bi (∀j ∈ V), (4a)

xij =
∑q

k=1 pk
ijλk (i ∈ {0, . . . , n}, j ∈ {i, . . . , n}), (4b)

xij ∈ Z+ (∀(i, j) ∈ A), (4c)

λk ∈ Z+ (k = 1, . . . , q). (4d)

where pk
ij is the value of the arc (i, j) on the path representing packing

k. Notice that we have not included the out-degree (3b) and fractional
capacity (3c) constraints in this formulation. Indeed, it can be shown that
any feasible solution to the LP relaxation of the above formulation satisfies
those constraints.

The exponential number of λ variables implies that pricing must be
performed on those variables. The pricing subproblem corresponding to this
formulation is a capacitated shortest-path problem over the acyclic graph
G. Although this is slightly harder than the bounded knapsack problem,
it can still be solved in pseudo-polynomial time by dynamic programming,
O(n2C). Any number of cuts over x variables, including branch cuts xij ≤
bαc or xij ≥ dαe, can be added without ever changing the structure of this
subproblem. Therefore, the pricing is guaranteed to remain tractable and
the resulting BCP algorithm is robust. Moreover, if only a few cuts on x are
added, we can reduce the underlying graph so that the practical complexity

6

of the shortest path solver remains close to that of the knapsack solver,
namely O(nC), see below.

A more compact formulation is obtained by eliminating the x variables
via the identities (4b). If only constraints (4a) are present, the result is ex-
actly the traditional Gilmore-Gomory formulation. However, an additional
cut of the type

∑
(i,j) πijxij T r is transformed into

∑q
k=1(

∑
(i,j) πijp

k
ij)λk T

r.

4 Capacity cuts

In order to obtain bounds better than LBGG without branching, we devise
effective cuts on x variables.

Definition 1 A capacity inequality is any inequality of the form:

∑

(i,j)∈δ−(S)

xij ≥ r(S),

where r(S) is any lower bound on the number of bins needed to pack the
items in S ⊆ V .

A similar family of cuts is known to be effective on the asymmetric CVRP.
Vanderbeck [17] already used such cuts, however only with |S| = 1, and
observed that they slightly decreased the size of the branching tree. To
keep the computation of the right hand side r(S) tractable, we suggest the
following possible options:

• rounded capacity (RC) inequalities, in which r(S) = dl(S)/Ce;

• rounded Gilmore-Gomory capacity (RGGC) inequalities, in which r(S)
is equal to the Gilmore-Gomory lower bound for the CSP defined
only on the items in S, rounded up (we denote this lower bound by
LBRGG(S)).

Let us give an example of how such inequalities can be effective on the
CSP. Probably the smallest known non-IRUP instance, due to M. Fieldhouse
(cf. [13]), is the following: n = 3, l1 = 15, l2 = 10, l3 = 6, b1 = 3, b2 = 5,
b3 = 9 and C = 30. For this instance, LBGG = 4.966. By adding the RC
inequality

∑
(i,j)∈δ−({2,3}) xij ≥ 4 and solving the pricing again, one gets

an improved bound of 5.055, enough to prove the optimality of a feasible

7

solution of value 6. There are two other violated RC inequalities in the first
fractional solution of the Fieldhouse instance. Using any one of those cuts
would also close the duality gap.

The following theorem, which has no counterpart in the case of the asym-
metric CVRP, is of both theoretical and practical interest:

Theorem 1 Let S ⊆ V be a set of items and let i be the index of the lowest
indexed item in S. Then, if r(S) = r(S \ {i}), the capacity inequality for S

is dominated by the capacity inequality for S \ {i} (no matter what method
is used to compute r(S)). The same holds if i is the index of the highest
indexed item in S.1

Proof When i is the lowest index, replacing S with S \ {i} causes the
left-hand side of the capacity inequality to decrease by 1−∑

j∈S\{i} xij ≥ 0.
If i is the highest index, the corresponding decrease is

∑
j∈V \S xji > 0. ¤

This result can potentially be exploited algorithmically. Several heuris-
tics for the separation of RC inequalities are known in the vehicle routing
literature. The separation problem for RGGC inequalities appears to be
more difficult. Of course, we could just add the RGGC inequality for V

itself to the LP, but this will not enable us to solve non-IRUP instances.
However, we know that the RGGC inequality for V will be dominated by
the RGGC inequalities for sets S′ ⊂ V satisfying the conditions of Theorem
1. The addition of the RGGC inequality for any such S′ to the master will
cause the linear programming lower bound to increase to at least LBRGG,
and possibly to even more.

Once the initial column generation phase has been completed, one simple
heuristic for finding such sets S′ is to find sets of consecutive in-degree
constraints (4a) whose dual prices sum to at most LBRGG − LBGG. It
follows from simple duality theory that removing the associated items from
V will yield suitable sets S′. For stronger cuts, i.e., even smaller subsets
of S′, it might be worthwhile re-optimizing over S′ by column generation,
yielding a new dual solution, to see if any more in-degree equations can be
dropped.

1This seems to imply that capacity inequalities with r(S) = 1 are redundant.

8

5 Column Generation

In this section we discuss the pricing problem in the Gilmore-Gomory formu-
lation of 1D-CSP arising when we add branching constraints and/or cutting
planes expressed in the CVRP variables. A straightforward way to solve
the pricing problem is to compute the dual values on the arcs of the under-
lying graph G and solve the capacitated shortest path problem. However,
depending on the branching strategy, we may mainly choose nodes at small
depth where only a few arcs are constrained. Then, the pricing problem is
very close to the bounded knapsack problem. The question arises how to
represent this simple shortest path problem by a graph with a small number
of arcs.

In the root, pricing is the bounded knapsack problem:

max
{∑

i

diai :
∑

i

liai ≤ C, ai ≤ bi, ai ∈ Z+ ∀i
}

, (5)

where di are simplex multipliers of the degree constraints (2a). It can be
solved by dynamic programming in O(nC) time [10]. With constraints on
the CVRP variables, pricing becomes a capacitated shortest path problem
[19]:

max
{∑

i,j

dijpij :
∑

i,j

ljpij ≤ C,
∑

i

pij ≤ bj ∀j,
∑

i<j

pij =
∑

k>j

pjk ∀j,

pij ∈ {0, 1} ∀i < j, pii ∈ {0, . . . , bi − 1} ∀i
} (6)

and can be solved in O(n2C) time.
Ziegelmann [19] gives a way to view the binary knapsack problem as a

capacitated shortest path problem using the following graph G′: for each
node i ∈ {0, . . . , n − 1}, introduce two arcs from i to i + 1, one arc with
profit di+1 and capacity li+1, and the other arc with both profit and capacity
zero. Then, the longest path from 0 to n + 1 is the solution of the knapsack
problem.

Now suppose that a constraint on some CVRP variable xi1j1 is added.
Then in (6) we have di1j1 6= dij1 for i 6= i1. To account for this in (5), let
us modify the graph G′ as follows: for each i ∈ {1, . . . , n}, distinguish the
state i when item i is not present in the solution and the state i when it
is present at least once. This gives the graph G′′ shown in Fig. 1.

All we need to do now is modify the set of arcs so that all feasible
solutions are represented correctly even when several constraints are added.

9

0 1

1 2

2

.........

0,0 0,0 0,0

0,0 0,0
d l d l1 1 2 2

Figure 1: Graph G′′

.........

i

i

j

j

+1

+1

j

j

d lji i

Figure 2: Graph G′′ with new arcs

Fig. 2 shows an idea of how to do this. For simplicity, we omitted the loop
arcs (i, i) in the drawings.

On this graph, the complexity of pricing is O(κnC) where κ is the number
of nodes involved in modified arcs.

6 Computational experiments

We tested the capacity cuts and the branching procedure. Moreover,
we discuss the issue of pseudo-polynomial complexity of column gen-
eration. All the test instances are available on http://www.math.tu-
dresden.de/˜capad/. In addition, the hard28 set is available on the ESICUP
page http://www.apdio.pt/sicup/.

The branch-cut-and-price framework was implemented in GNU C++ 3.3
and run on an AMD Opteron 2.2 GHz with 1 GB of memory. The LP solver
was CPLEX 9.0.3.

6.1 Capacity Cuts

We implemented the exact separation procedure from [7]. To find a set
S for which the rounded capacity cut is violated by a given solution xij

((i, j) ∈ A), we solved the following mixed-integer program:

Minimise
∑

i,j xijwij

Subject to:

wij ≥ yj − yi (∀(i, j) ∈ A), (7a)
∑

i liyi ≥ MC + 1, (7b)

wij ≥ 0 (∀(i, j) ∈ A), (7c)

yi ∈ {0, 1} (i = 1, . . . , n), (7d)

y0 = 0 (7e)

10

for all M from 2 up to (current upper bound)−1 and stopped if the optimal
objective value was smaller than M +1−10−3. For the first three non-IRUP
1D-BPP instances from the collection ”53NIRUP” with up to 40 items, we
needed only 1 or 2 iterations to close the gap by inequalities with M = 2
or 3. It should be noted that these three instances have an integer root
LP value. For other instances, where the root LP value is below integer,
we found some violated cuts and sometimes raised the LP value up to the
integer but not higher. Note that the MIP (7a)–(7e) is rather easy to solve
for M = 2 and M = (upper bound)−1. For larger instances such as hard28
(see below), not many violated cuts with these values of M were found and
other values of M made the MIP difficult. Thus, separation heuristics are
needed as well as investigations concerning other types of cuts.

6.2 Branching on CVRP variables

We considered the ‘hard28’ set of CSP instances [15, 2] with n ∈
{140, 160, 180, 200}. Among those 28 instances, 5 are non-IRUP, so that
current branch-and-price algorithms must perform branching in order to
close the duality gap. The remaining instances are IRUP, but very hard for
heuristics, so current algorithms may also have to branch repeatedly until
an optimal packing is found.

We have run the proposed robust BCP algorithm using only the cuts
resulting from branchings on the bounds of x variables. We have not yet
implemented separation heuristics for capacity cuts. A comparison with a
non-robust BCP branching on λ variables, fully described in [2], is given.
Another method to compare with is the branching scheme on the variables
of the arc-flow model [3]. The only change we made is that we considered
only proper patterns a, i.e. with a ≤ b. All three algorithms were executed
8 times on the whole test set, with four different starting bases and other
varying parameters. For each method, we carefully selected favourable pa-
rameters, because the G&G and AFF branchings can easily need more than
two hours for the 18th instance bpp716 (which is non-IRUP). In fact, both
these methods heavily depend on the choice of “=” or “≥” in the degree con-
straints. Furthermore, this experiment has shown that random branching
variable choice is not worse than the “most infeasible” rule.

Table 1 shows the results. From the right half of the table we see that
instance bpp716 is the reason why the average time for the G&G method is

11

Table 1: Comparison of the three branching rules on the hard28 set:
average time, standard deviation, nodes, and log. average time

hard28 all hard28 - no bpp716
tave ∆t nod tlog.ave tave ∆t nod tlog.ave

G&G 17.6 121.2 2689 2.3 2.7 4.1 212 2.0
NFF 10.0 11.9 163 6.3 10.3 11.9 169 6.7
AFF 8.3 11.2 167 5.1 8.2 10.9 168 5.2

higher. NFF branching has the smallest relative standard deviation and no
instances with extremely high times.

6.3 Pseudo-Polynomiality of Column Generation

When branching on the variables λ of the Gilmore-Gomory model, the only
possible column generation method is branch and bound. This method
performs exponentially in the worst case, but for the hard28 set it has good
results. It performs very poorly on instances with very small items [2].

The capacitated shortest path solver has a pseudo-polynomial complex-
ity, i.e. the time depends on capacity C. This has the following effect: for
hard28, where C = 1000, the average time for column generation in the root
is < 1 sec. For similar instances with C = 10000 it is 10 seconds (about
1000 columns are generated in both cases.)

7 Conclusions

A node-flow formulation for one-dimensional stock cutting was proposed.
This formulation has no symmetries. Capacity cuts, based on the variables of
this formulation, can raise the LP bound in the difficult non-IRUP instances
enough to prove optimality of a good heuristic solution. Branching on the
variables of the NFF formulation, as well as those of the arc-flow formulation,
is robust. Both were compared to branching on variables of the Gilmore-
Gomory formulation. NFF and AFF are faster than G&G only for instances
with small number of items n and/or small capacity C. This is explained by
the pseudo-polynomial column generation complexity. The method shows
high stability of running times with various algorithmic parameters.

12

References

[1] H. Ben Amor (1997) Résolution du Problème de Decoupé par
Génération de Colonnes. Master’s thesis, École Polytechnique de
Montréal, Canada.

[2] G. Belov & G. Scheithauer (2003) A branch-and-cut-and-price algo-
rithm for one-dimensional stock cutting and two-dimensional two-stage
cutting. To appear in Eur. J. Opl Res.

[3] V. de Carvalho (2002) LP models for bin packing and cutting stock
problems. Eur. J. Opl Res., 141, 253–273.

[4] L. M. A. Chan, D. Simchi-Levi & J. Bramel (1998) Worst-case analyses,
linear programming and the bin-packing problem. Math. Program., 83,
213–227.

[5] G. Dantzig & P. Wolfe (1960) Decomposition principle for linear pro-
grams. Oper. Res., 8, 101–111.

[6] R. Fukasawa, M. Poggi de Aragão, O. Porto & E. Uchoa (2003) Robust
branch-and-cut-and-price for the capacitated minimum spanning tree
problem. In Proc. of the International Network Optimization Confer-
ence, Evry, France, 231–236.

[7] R. Fukasawa, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa
& R. Werneck (2004) Robust branch-and-cut-and-price for the capaci-
tated vehicle routing problem. In Integer Programming and Combina-
torial Optimization 10. LNCS, 3064, 1–15.

[8] P.C. Gilmore & R.E. Gomory (1961) A linear programming approach
to the cutting stock problem, Part I. Oper. Res., 9, 849–859.

[9] P.C. Gilmore & R.E. Gomory (1963) A linear programming approach
to the cutting stock problem, Part II. Oper. Res., 11, 863–888.

[10] H. Kellerer, U. Pferschy, & D. Pisinger (2004) Knapsack Problems.
Springer.

[11] O. Marcotte (1986) An instance of the cutting stock problem for which
the rounding property does not hold. Oper. Res. Lett., 4, 239–243.

13

[12] M. Poggi de Aragão & E. Uchoa (2003), Integer program reformula-
tion for robust branch-and-cut-and-price. In L.Wolsey (ed.) Annals of
Mathematical Programming in Rio, pp. 56–61.

[13] J. Rietz (2003) Investigations of MIRUP for vector packing problems.
Ph.D. thesis, Freiberg University (in German).

[14] J. Rietz & G. Scheithauer (2002) Tighter bounds for the gap and non-
IRUP constructions in the one-dimensional cutting stock problem. Op-
timization, 51, 927–963.

[15] J. E. Schoenfield (2002) Fast, exact solution of open bin packing prob-
lems without linear programming. Draft, US Army Space & Missile
Defense Command, Huntsville, Alabama, USA.

[16] G. Scheithauer & J. Terno (1995) The modified integer round-up prop-
erty of the one-dimensional cutting stock problem. Eur. J. Opl Res.,
84, 562–571.

[17] F. Vanderbeck (1999) Computational study of a column generation al-
gorithm for bin packing and cutting stock problems. Math. Program.,
86, 565–594.

[18] F. Vanderbeck (2000) On Dantzig-Wolfe decomposition in integer pro-
gramming and ways to perform branching in a branch-and-price algo-
rithm. Oper. Res., 48, 111-128.

[19] M. Ziegelmann (2001) Constrained Shortest Paths and Related Prob-
lems. Ph.D. thesis, University of Saarland.

14

