
Robust Branch-and-Cut-and-Price for the
Capacitated Vehicle Routing Problem

Ricardo Fukasawa, Marcus Poggi de Aragão,
Marcelo Reis, Eduardo Uchoa
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Abstract

During the eigthies and early nineties, the best exact algorithms for the Capacitated Vehicle
Routing Problem (CVRP) utilized lower bounds obtained by Lagrangean relaxation or column
generation. Next, the advances in the polyhedral description of the CVRP yielded branch-and-
cut algorithms giving better results. However, several instances in the range of 50–80 vertices,
some proposed more than 30 years ago, can not be solved with current known techniques. This
paper presents an algorithm utilizing a lower bound obtained by minimizing over the intersec-
tion of the polytopes associated to a traditional Lagrangean relaxation over q-routes and the one
defined by bounds, degree and the capacity constraints. This is equivalent to a linear program
with an exponential number of both variables and constraints. Computational experiments
show the new lower bound to be superior to the previous ones, specially when the number of
vehicles is large. The resulting branch-and-cut-and-price could solve to optimality almost all
instances from the literature up to 100 vertices, nearly doubling the size of the instances that
can be consistently solved. Further progress in this algorithm may be soon obtained by also
using other known families of inequalities.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) consists of given an undirected graph G =
(V, E) with vertices numbered as {0, 1, . . . , n} (vertex 0 represents the depot and the remaining
vertices represent clients), client demands d(1), . . . , d(n), lengths `(e) associated to edges in
E and K vehicles with capacity C; determine routes for each vehicle satisfying the following
constraints: (i) each route starts and ends at the depot, (ii) each client is visited by a single
vehicle, and (iii) the total demand of clients visited in a route is at most C. The objective is
to minimize the sum of the routes length. This classical NP-hard problem was first proposed
by Dantzig and Ramsey in 1959 [19] and have received a lot of attention from the optimization
community since then, due to its widespread applications, and also because it is a natural
generalization of the Travelling Salesperson Problem (TSP).



A landmark exact algorithm for the CVRP was presented in 1981 by Christofides, Mingozzi
and Toth [16] using a Lagrangean bound obtained by solving minimum q-route problems. A
q-route starts at the depot and traverses a sequence of clients limiting the demand accumulated
to at most C and returns to the depot. It is not necessarily a simple path, for some clients
may be visited more than once. Therefore, the set of valid CVRP routes is contained in the
set of q-routes. The resulting branch-and-bound could solve instances up to 25 vertices, a quite
respectful size at that time.

Several other branch-and-bound algorithms using Lagrangean bounds appear in the litera-
ture. This same article [16] also describes a lower bound based on k-degree center trees, minimum
spanning trees having degree K ≤ k ≤ 2K on the depot, plus 2K − k least cost edges. Other
authors propose Lagrangean bounds based on K-trees, which are sets of n + K edges spanning
G, like Fisher [21] and Martinhon, Lucena and Maculan [29]. There is also an algorithm based
on minimum b-matchings having degree 2K at the depot and 2 on the remaining vertices by
Miller [30]. The Lagrangean bounds can be improved by dualizing capacity inequalities [21, 30]
and also combs and multistar inequalities [29].

Another kind of exact algorithms have its stem on the formulation of the CVRP as a set
partition problem by Balinsky and Quandt [9]. In that formulation, a column covers a set
of vertices S with total demand not exceeding C and have the cost of a minimum route over
{0} ∪ S. Bramel and Simchi-Levi [13] proved that for certain natural classes of instances,
the ratio between the lower bounds given by that formulation and the optimal solution values
asymptotically approaches 1 as the number of clients grows. However, that formulation in itself
is not practical because pricing over the exponential number of columns require the solution of
capacitated prize-collecting TSPs, a problem almost as difficult as the CVRP itself. Agarwal,
Marthur and Salkin [3] proposed a column generation algorithm on a modified set partition
where column costs are given by a linear function over the vertices yielding a lower bound on
the actual route cost. Columns with the modified cost can be priced by solving easy knapsack
problems. Hadjconstantinou et al. [23] derive lower bounds from heuristic solutions to the dual
of the set partitioning formulation. Those dual solutions are obtained by the so-called additive
approach, combining the q-path with the K-shortest path relaxations.

For further information and some comparative results on the above mentioned algorithms,
we refer the reader to the survey by Toth and Vigo [37].

Starting in the 90’s, most of the research effort on the CVRP is now concentrated on the
polyhedral description of convex hull of the edge incidence vectors that correspond to K fea-
sible routes and on the development of effective separation algorithms for the families of valid
inequalities identified (for instance, [4, 14, 18, 6, 7, 2, 31, 27]). In particular, Araque et al. [5],
Augerat et al. [8], Blasum and Hochstattler [12], Ralphs et al. [36], Achutan, Caccetta and
Hill [1] and Lysgard, Letchford and Eglese [28] describe complete branch-and-cut algorithms,
some including sophisticated inequalities such as framed capacity, strengthened combs, multi-
star, among others. (The taxonomy and nomenclature of valid inequalities for the CVRP is not
uniform in the literature, we are following [28] in this article.)

Although those are the best exact algorithms currently available for the CVRP, the lower
bounds obtained at the root nodes, even after adding all those cuts, are not very tight for many
instances with as little as 40 vertices. The quality of those bounds is specially problematic for
larger values of K, say K ≥ 7. Many nodes in a branch-and-cut tree may have to be explored
in order to close the resulting duality gaps. Even resorting to massive computational power
(up to 80 processors running in parallel in a recent work by Ralphs [36, 35]) several instances
with less than 80 vertices, including some proposed more than 30 years ago by Christofides and
Eilon [15], can not be solved at all. In fact, it seems that branch-and-cut algorithms for the
CVRP are experimenting a “diminishing returns” phenomenon, where substantial theoretical
and implementation efforts leads to practical results that are only marginally better than those
of previous works.

This work presents a new exact algorithm for the CVRP that seems to break through this
situation. The main idea is to combine the branch-and-cut approach with the old q-routes ap-
proach (which we interpret as a column generation instead of the original Lagrangean relaxation)
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to derive superior lower bounds. Since the resulting formulation has an exponential number of
both columns and rows, this leads to a branch-and-cut-and-price algorithm. Computational
experiments over the main instances from the literature show that this algorithm can consis-
tently solve instances with up to 100 vertices. Seventeen open instances were solved for the
first time. Those results were obtained using only bound, degree and capacity inequalities. An
improved algorithm is soon expected by also separating framed capacity, strengthened combs,
multistar, partial multistar and extended hypotour inequalities, but this was not done yet due
to the complexity of implementing the corresponding separation heuristics. 1

The idea of combining column and cut generation in order to achieve improved lower bounds
have existed since the eighties. The difficulty, pointed out for rarely performing that, was the
fact that the new dual variables corresponding to separated cuts could change the structure of
the pricing subproblem, leading to an intractable pricing (Barnhart et al.[11] and Wilhelm[39]
comment on this matter). Recently, several researchers [38, 24, 25, 20, 10] have noted that
cuts expressed in terms of variables from a suitable original formulation can be incorporated to
the column generation without disturbing the pricing. We use the term “robust branch-and-
cut-and-price” to refer to such algorithms: branch-and-bounds over linear programs with an
exponential number of both columns and rows and where neither branching nor separation ever
change the structure of the pricing subproblems.

The article [33] is a detailed discussion on that matter. In particular, it proposes some
reformulation techniques that extend the applicability of robust branch-and-cut-and-price algo-
rithms to virtually any combinatorial optimization problem. Moreover, it is argued that such
algorithms may lead to advances on a wide variety of classic problems, from TSP to graph
coloring. The present article on the CVRP is part of a larger effort to support that claim. Very
good results were also already obtained on the capacitated minimum spanning tree problem [22]
and on the generalized assignment problem [32].

2 The New Formulation

A classical formulation for the CVRP [26] represents by xij the number of times a vehicle
traverses edge (i, j) ∈ E. Let V+ be the set {1, . . . , n} of client vertices. Given a set S ⊆ V+,
let d(S) be the sum of the demands of all vertices in S and δ(S) denote the cut-set defined by
S. Let also k(S) = dd(S)/Ce. Consider the polytope in R|E| next defined:

P1 =





∑
e∈δ({i})

xe = 2 ∀ i ∈ V+ (1)
∑

e∈δ({0})
xe = 2.K (2)

∑
e∈δ(S)

xe ≥ 2.k(S) ∀S ⊆ V+ (3)

xe ≤ 1 ∀ e ∈ E \ δ({0}) (4)
xe ≥ 0 ∀ e ∈ E

Constraints (1) state that each non-depot vertex is visited once by a vehicle and constraints
(2) that K vehicles must go out and in the depot. Constraints (3) are the capacity inequalities
requiring that all subsets are served by enough vehicles. Constraints (4) ensure that each edge
non adjacent to the depot can be traversed no more than once. Edges adjacent to the depot
can be used twice, this is the case where a route serves only one client. The integer vectors x in
P1 define all feasible solutions for the CVRP.

Due to the exponential number of inequalities (3), the lower bound given by

L1 = min{
∑

e∈E

`e.xe : x ∈ P1}

1J. Lysgard kindly promised to let us experiment with his implementation of those heuristics, described in [27, 28],
in a near future.
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has to be calculated by a cutting plane algorithm. In fact, as separating capacity inequalities is
NP-hard, one usually resorts to separation heuristics. In that case, the actual bounds obtained
may be a little worse than L1. Modern branch-and-cut algorithms for the CVRP, like [5, 8, 12,
36, 1, 28], may improve this bound by also separating several other known families of inequalities.

Formulations with an exponential number of columns can be obtained by defining variables
(columns) that correspond to valid CVRP routes, as first proposed by Balinski and Quandt [9].
Those formulations are not practical since pricing such columns amounts to solving a capacitated
prize-collecting TSP, a strongly NP-hard problem. One way of dealing with this difficulty is by
enlarging the set of the columns to correspond to q-routes.

As already mentioned in the introduction, a q-route is a closed path visiting a sequence
{0, v1, . . . , vr, 0} of vertices such that

∑r
i=1 d(vi) ≤ C and vi 6= 0 for each i in {1, . . . , r}, r ≥ 1.

Note that vertices can appear more than once in the q-route. The cost of a q-route is given by
`(0, v1) +

∑r−1
i=1 `(vi, vi+1) + `(vr, 0). Finding a minimum cost q-route can be done in pseudo-

polynomial time, O(n2.C). Christofides, Mingozzi and Toth [16] has shown that restricting the
set of q-routes to those without 2-cycles (subpaths (i, j), (j, i)) does not change this complexity.
Let Q be a m × p matrix where the columns are the edge incidence vectors of all p possible
q-routes with no 2-cycles (except for those corresponding to single client routes). Denote by qe

j

the coefficient associated to edge e in the jth column of Q and consider the following polytope
in Rp+|E|:

P2 =





p∑
j=1

qe
j .λj − xe = 0 ∀e ∈ E (5)

p∑
j=1

λj = K (6)
∑

e∈δ({i})
xe = 2 ∀ i ∈ V+ (1)

xe ≥ 0 ∀ e ∈ E
λj ≥ 0 ∀ j = 1, . . . , p

Constraints (5) define the coupling between variables x and λ. Constraint (6) states the number
of vehicles to utilized. Since the definition of the columns already imposes the capacity con-
traints, it remains to add the degree constraints (1). The integer vectors in P2 also define all
feasible solutions for the CVRP. This is because setting to 1 a variable λj corresponding to a
q-route that is not a valid CVRP route, violates some degree constraints (1).

Due to the exponential number of variables λ, the lower bound given by

L2 = min{
∑

e∈E

`e.xe : x ∈ Projx(P2)}

has to be calculated by a column generation algorithm, or equivalently, by Lagrangean re-
laxation. A branch-and-bound using such relaxation [16] was the first really successful exact
algorithm for the CVRP.

The alternative way of describing the polyhedra associated to a column generation or to a
Lagrangean relaxation in terms of two sets of variables, λ and x, used in the definition of P2, is
called Explicit Master in [33]. The main contribution of this article is to propose a formulation
that amounts to optimizing over the intersection of polytopes P1 and Projx(P2), which follows.
The Explicit Master format makes easy to see that such formulation must be the following.
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P1

⋂
Projx(P2) = Projx





∑
e∈δ({i})

xe = 2 ∀ i ∈ V+ (1)
∑

e∈δ({0})
xe = 2.K ∀S ⊆ V+ (2)

∑
e∈δ(S)

xe ≥ 2.k(S) ∀S ⊆ V+ (3)

xe ≤ 1 ∀ e ∈ E \ δ({0}) (4)
p∑

j=1

qe
j .λj − xe = 0 ∀e ∈ E (5)

p∑
j=1

λj = K (6)

xe ≥ 0 ∀ e ∈ E
λj ≥ 0 ∀ j = 1, . . . , p

Remark that constraints (6) can be discarded. They are implied by constraints (2) and (5). The
improved lower bound is, then, given by:

L3 = min{
∑

e∈E

`e.xe : x ∈ P1

⋂
Projx(P2)}.

This bound can be calculated by solving a linear program with an exponential number of both
variables and constraints. A more compact equivalent linear program can be obtained by elim-
inating the x variables substituting the xe values given by (5) in constraints (1)-(4). We will
refer to the resulting LP as the Dantzig-Wolfe Master problem (DWM).

DWM =





L3 = min
p∑

j=1

∑
e∈E

`e.q
e
j .λj (7)

s.t.
p∑

j=1

∑
e∈δ(i)

qe
j .λj = 2 ∀ i ∈ V+ (8)

p∑
j=1

∑
e∈δ({0})

qe
j .λj = 2.K (9)

p∑
j=1

∑
e∈δ(S)

qe
j .λj ≥ 2.k(S) ∀S ⊆ V+ (10)

p∑
j=1

qe
j .λj ≤ 1 ∀ e ∈ E \ δ({0}) (11)

λj ≥ 0 ∀ j = 1, . . . , p

Remark that bound constraints (11) are really necessary, because imposing upper bounds on
the x variables can not be done only by upper bounds on λ variables.

3 The Branch-and-Cut-and-Price

3.1 Initialization

We first try to tighten the upper bounds on the variables associated to edges incident to the
depot. If K−1 vehicles are not enough to serve the n−1 clients in the set V +\{i} (a bin-packing
problem) then the upper bound of edge (0, i) can be reduced to 1. We do not actually solve the
bin-packing, the simple lower bound dd(V + \ {i})/Ce is used instead.

The DWM corresponding to the root node is initialized with a set of artificial variables of
high cost covering constraints (8) and (9). Constraints (10) and (11) are omitted.
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3.2 Column Generation

The pricing subproblem amounts to determining whether there is a q-route corresponding to a
column with a negative reduced cost. In particular, we want to find the q-route with the most
negative reduced cost and, if there exists, several others negative reduced cost routes as different
as possible from each other. We remind that only 2-cycle free q-routes are being considered.

Let µ, ν, π and ω be the dual variables associated to constraints (8), (9), (10) and (11),
respectively. The reduced cost associated to edge e is given by

c̄e =





`e − µi − µj −
∑

S|δ(S)3e

πS − ωe e = {i, j} ∈ E \ δ({0})
`e − ν − µj −

∑
S|δ(S)3e

πS e = {0, j} ∈ δ({0})

The reduced cost of a column (λ variable) is given by the sum of the reduced costs of the edges
in the q-route associated to it. A minimum reduced cost q-route can be obtained by dynamic
programming in O(n2.C) time. We resort the reader to [16, 17].

We generate columns to DWM after the root initialization, after some cut from (10) or (11)
is added to DWM or, in the non-root nodes, after a branching.

3.3 Cut Generation

Given a fractional solution λ̄ to DWM, the corresponding fractional solution x̄ is calculated by
using equalities (5). All separation routines work over x̄.

Bound constraints (11) are easily separated by inspection. Remark that having all those
constraints in the current LP would add |E| rows and too many non-zeros to it.

Capacity constraints (10) are heuristically separated using a set of six routines written by T.
Ralphs as part of a demo implementation of a branch-and-cut for the CVRP on the Symphony
framework [34]. Those routines are pretty fast, but they are not as good on finding violated
capacity constraints as state-of-art separating routines, like those described on [8, 7, 12, 36, 28].
For that reason, we also use an exact separation routine using the MIP solver embedded in
CPLEX. Let x̄ be a fractional solution. Define yi as a binary variable equal to 1 iff vertex i
belongs to set S and wij be a variable that is equal to 1 if edge (i, j) belongs to δ(S). For each
value of M in {1, . . . , dd(V +)/Ce − 1} we solve:

z = min
∑

(i,j)∈E

x̄ijwij

s.t. wij ≥ yj − yi ∀ (i, j) ∈ E
wij ≥ yi − yj ∀ (i, j) ∈ E∑

i∈V +
d(i)yi ≥ M.C + 1

y0 = 0
yi ∈ {0, 1} ∀ i ∈ V +

wij ≥ 0 ∀ (i, j) ∈ E

If z ≤ 2(M + 1), then the capacity inequality over set S is violated.
Solving those MIPs is computationally costly. In level 0 of the branch-and-bound tree (the

root node), we separate capacity constraints exactly, calling the MIP solver whenever the heuris-
tic separation fails, as many times as necessary to be sure that no capacity constraint is violated.
In levels 1 up to 4 we perform only one round of exact separation. In deeper levels, only the
heuristic separation is performed.

3.4 Branching

We branched by calculating x̄ as above and selecting the variable with value closest to 0.5. Note
that if for some edge (0, j), 1 < x̄0j < 2, then for some other edge (i, j), 0 < x̄ij < 1. In other
words, we never need to branch over a fractional variable with value greater than 1.
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Fixing a variable xe to 0 or 1 can be enforced in the DWM by a constraint similar to (11).
Edges fixed to 0 can also be removed from the pricing subproblem.

4 Computational Experiments

We present our computation results on 44 instances from the literature available at
http://www.branchandcut.org/VRP , a site maintained by T. Ralphs. Those instances are: (i)
the 12 instances from series A with no less than 50 vertices; (ii) the 13 instances from series B
with no less than 50 vertices; (iii) the 7 instances from series E with no less than 50 vertices; (iv)
the 5 instances from series M; and (v) the 7 open instances from series P. On all those instances
the lengths are obtained by the Euclidian distance between vertex coordinates rounded to the
nearest integer, following the TSPLIB convention. Most of the recent literature on the CVRP
also adopt that convention.

Table 1 is a comparison of lower bounds. The first column gives the instance name, indicating
its series, the number of vertices and the value of K. For instance, A-n53-k7 is an instance from
series A, with 53 vertices (52 clients, plus the depot) and 7 vehicles. The following columns are
the bounds L1, L2 and L3. Bound L1 is calculated by a cutting plane algorithm that separates
capacity constraints exactly, bound L2 is from a column generation over the q-paths and bound
L3 comes from solving DWM to optimality. Column LLE03 gives the lower bounds shown in
[28], on most instances those are the best bounds already obtained by a cutting plane algorithm
using several constraints besides capacities. Column BUB are the best known upper bounds,
already including the improved bounds found in this work. Values in bold indicate upper bounds
proved to be optimal. Finally, Time L3 gives the time in seconds spent by our code to calculate
L3 (that is, the time to solve the root node of our branch-and-cut-and-price) on a Pentium 2GHz
processor and 512MB of RAM, using CPLEX 7.1 as LP solver.

Some comments about results on Table 1.

• On most instances the bound L3 is significantly better than bounds L2 and LLE03.
• Bound L2 was shown to be unstable. On a number of instances, it can be much better than

LLE03 and quite close to L3. This is the case of instance E-n76-k14. However, on some
instances it can be very poor, much worse than L1. This happens on all tested instances
from series B.

• On 4 instances (B-n56-k7, B-n64-k9, E-n51-k7 and E-n101-k8) bound LLE03 is a little
better than L3. This is a sure indication that adding the families of inequalities used by
[28] to DWM would give even better bounds.

• The times to calculate L3 are quite reasonable, except for instances from series M. We
remark that the exact separation of capacity constraints by solving MIPs responds for
more than 70% of the L3 Time on average.

Table 2 presents results of our complete branch-and-cut-and-price algorithm. Columns L3
and Root Time repeat information already given in the previous table. Column Total Time is
the total cpu time spent. Column Tree Size is the number of nodes explored in the branch-and-
bound tree. Column PUB is the previous best known upper bound found in the literature or
at http://www.branchandcut.org/VRP. Values in bold indicate upper bounds already proved to
be optimal. Column OUB is the upper bound found by our branch-and-cut-and-price. Again,
values in bold indicate optimal solutions. Rows with a dash (-) indicate that the complete
algorithm was not run for that instance. Some comments follows.

• Our branch-and-cut-and-price could solve 17 previously open instances to optimality, in-
cluding the classical instances E-n76-k10 and E-n76-k14 proposed by [15]. Our algorithm
seems to be significantly better than recent branch-and-cut implementations on instances
with many vehicles.

• We believe that our algorithm (perhaps with minor amendments) can consistently solve
instances with up to 100 vertices.
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• We stopped running instance B-n68-k9 because we felt it would take too much time to
finish. Anyway, a solution improving upon the previous best known solution on 3 units
was found. This instance has a special structure: its clients are split into 9 very compact
clusters and the cluster capacities do not match vehicle capacity. This makes our branching
on edges very ineffective. Suppose e is a fractional edge with endpoints on clusters A and
B. Fixing e to 0 barely changes the problem, because another edge f also with endpoints
in A and B will take the role of e on another fractional solution with almost the same cost.
The solution here is branching using constraints on the total value of edges that goes from
one cluster to another.
By the way, instance M-n101-k10 is very easy because its clients are split into 10 clusters
and the cluster capacities match vehicle capacity.

• We believe that E-n101-k14 can be solved with our current code, but that would take some
weeks of cpu time. We decided that it is better to improve our code before spending so
much cpu time.

5 Conclusion

We believe that the good performance of branch-and-cut-and-price algorithms will motivate
further polyhedral research on the CVRP in the next years. We take open instance E-n101-k14 as
example. A branch-and-cut only using the capacity inequalities gets the lower bound of 1009 in
the root node. Adding many other families of inequalities, [28] could improve this bound to 1027.
As the best known upper bound for this instance is 1071, this substantial improvement makes
little difference in practice: closing a gap of 44 units is impossible anyway. Our branch-and-
cut-and-price with only capacity inequalities gets a lower bound of 1052. Closing this gap of 19
units would probably take weeks of cpu time. But now, every unit of gap reduction achieved by
adding other families of inequalities makes much practical difference, possibly reducing running
time to days or even hours of cpu. To summarize things, now that we know that the “nasty
part” of the CVRP polyhedra can somehow be treated by the column generation over the q-
routes, our knowledge on the “remaining parts” of the CVRP polyhedra and the availability of
good separation heuristics are likely to play a decisive role in the solution of larger and harder
instances.
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Time
Instance L1 L2 L3 LLE03 BUB L3 (s)
A-n53-k7 996.6 978.5 1002.2 998.7 1010 157
A-n54-k7 1130.7 1114.0 1150.0 1135.3 1167 61
A-n55-k9 1055.9 1025.4 1066.4 1058.3 1073 289
A-n60-k9 1316.4 1305.6 1341.6 1319.6 1354 129
A-n61-k9 1004.9 996.8 1018.6 1010.2 1034 129
A-n62-k8 1244.1 1222.7 1274.1 1251.7 1288 105
A-n63-k9 1572.2 1564.8 1603.5 1580.7 1616 158
A-n63-k10 1262.2 1267.4 1294.5 1266.6 1314 148
A-n64-k9 1340.1 1353.3 1378.9 1351.6 1401 84
A-n65-k9 1151.1 1133.0 1163.4 1155.2 1174 120
A-n69-k9 1106.7 1113.2 1138.4 1114.4 1159 118
A-n80-k10 1699.6 1712.2 1749.7 1709.6 1763 327
B-n50-k7 740.0 664.8 741.0 741.0 741 10
B-n50-k8 1279.3 1217.5 1291.8 1281.1 1312 53
B-n51-k7 1024.6 918.4 1025.9 1025.6 1032 42
B-n52-k7 745.0 640.2 746.3 746.0 747 99
B-n56-k7 703.4 606.9 704.5 705.0 707 83
B-n57-k7 1148.7 1058.5 1150.9 1150.1 1153 1347
B-n57-k9 1568.0 1511.5 1595.2 1589.2 1598 113
B-n63-k10 1478.9 1418.4 1484.2 1481.0 1496 191
B-n64-k9 858.5 769.3 860.1 860.5 861 2086
B-n66-k9 1279.8 1223.1 1302.6 1298.5 1316 144
B-n67-k10 1023.8 984.5 1026.4 1024.8 1032 278
B-n68-k9 1256.4 1163.9 1261.5 1258.1 1272 126
B-n78-k10 1201.2 1124.5 1212.5 1205.6 1221 846
E-n51-k5 514.5 512.9 518.0 519.0 521 33
E-n76-k7 661.4 663.3 668.4 666.4 682 44
E-n76-k8 711.2 716.7 725.1 717.9 735 191
E-n76-k10 789.5 811.4 816.5 799.9 830 160
E-n76-k14 948.1 999.6 1004.8 969.6 1021 94
E-n101-k8 796.3 786.4 801.8 802.6 815 645
E-n101-k14 1008.3 1045.1 1051.6 1026.9 1071 271
M-n101-k10 819.5 798.1 820.0 820.0 820 189
M-n121-k7 1009.7 1013.0 1030.9 1017.4 1034 9295
M-n151-k12 967.2 991.5 996.4 - 1053 10142
M-n200-k16 1187.8 1240.4 1246.7 - - 12342
M-n200-k17 1195.5 1243.3 1249.2 - 1373 13547
P-n50-k8 596.9 612.5 615.3 - 631 70
P-n55-k10 646.7 677.2 680.1 - 694 27
P-n55-k15 895.1 963.0 967.5 - 989 110
P-n60-k10 708.3 733.5 737.2 - 744 26
P-n60-k15 903.3 955.6 961.2 - 968 50
P-n65-k10 756.5 779.8 785.2 - 792 34
P-n70-k10 786.9 808.3 812.7 - 827 74

Table 1: Comparison of bounds.

12



Instance L3 Root Time (s) Total Time (s) Tree Size PUB OUB
A-n53-k7 1002.2 157 2017 185 1010 1010
A-n54-k7 1150.0 61 11220 2467 1167 1167
A-n55-k9 1066.4 289 1769 197 1073 1073
A-n60-k9 1341.6 129 71995 8389 1354 1354
A-n61-k9 1018.6 129 17640 4235 1034 1034
A-n62-k8 1274.1 105 80291 9033 1290 1288
A-n63-k9 1603.5 158 38590 3549 1616 1616
A-n63-k10 1294.5 148 276259 126840 1315 1314
A-n64-k9 1378.9 84 667339 155761 1402 1401
A-n65-k9 1163.4 120 2820 301 1174 1174
A-n69-k9 1138.4 118 288028 31541 1159 1159
A-n80-k10 1749.7 327 101331 15609 1763 1763
B-n50-k7 741.0 10 10 1 741 741
B-n50-k8 1291.8 53 - - 1312 -
B-n51-k7 1025.9 42 400 1035 1032 1032
B-n52-k7 746.3 99 229 3 747 747
B-n56-k7 704.5 83 358 15 707 707
B-n57-k7 1150.9 1347 1650 13 1153 1153
B-n57-k9 1595.2 113 1529 83 1598 1598
B-n63-k10 1484.2 191 4080 537 1496 1496
B-n64-k9 860.1 2086 1169 3 861 861
B-n66-k9 1302.6 144 - - 1316 -
B-n67-k10 1026.4 278 14520 1043 1032 1032
B-n68-k9 1261.5 126 > 569212 > 141044 1275 1272
B-n78-k10 1212.5 846 9000 15797 1221 1221
E-n51-k5 518.0 33 188 21 521 521
E-n76-k7 668.4 44 203352 24799 682 682
E-n76-k8 725.1 191 94990 7786 735 735
E-n76-k10 816.5 160 160640 48449 830 830
E-n76-k14 1004.8 94 244455 85738 1021 1021
E-n101-k8 801.8 645 - - 815 -
E-n101-k14 1051.6 271 - - 1071 -
M-n101-k10 820.0 189 520 3 820 820
M-n121-k7 1030.9 9295 206244 529 1034 1034
M-n151-k12 996.4 10142 - - 1053 -
M-n200-k16 1246.7 12342 - - - -
M-n200-k17 1249.2 13547 - - 1373 -
P-n50-k8 615.3 70 10251 12287 649 631
P-n55-k10 680.1 27 65036 19535 696 694
P-n55-k15 967.5 110 7136 15161 993 989
P-n60-k10 737.2 26 2471 173 756 744
P-n60-k15 961.2 50 20454 2403 1033 968
P-n65-k10 785.2 34 12394 337 792 792
P-n70-k10 812.7 74 413296 79480 834 827

Table 2: Branch-and-cut-and-price results.
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