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Abstract 
 

This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the 
known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies 
are high and distances are relatively short. Although the distances are not very large, service times are 
high due to the large number of intermediate stops required to allow proper passenger flow. The previous 
circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between 
the different lines, force the introduction of empty trains and a careful control on shunting operation.  
In practice the future demand is generally unknown and the decisions must be based on uncertain 
forecast. We have developed a stochastic rolling stock formulation of the problem. The computational 
experiments were developed using a commercial line of the Madrid suburban rail network operated by 
RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained 
by deterministic scenarios and stochastic approach some useful conclusions may be obtained. 
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1. Introduction 
 
In the RS problem for a daily planning period, the data and the decisions must be considered in 
a space-time network. The known demand and scheduling are met by a given fleet. The RS 
model takes decisions about the aggregation and disaggregation of the different RS in the depot 
stations.  The problem can be stated as follows in the context of the metropolitan rapid transit 
networks: Given the train services' departure and arrival times as well as the expected numbers 
of passengers at each arc and period, find the optimal assignment of the RS to the train services 
considering composition changes. 
For passenger demand, we use the expected number of passengers for each service given by 
RENFE. The expectation is taken from historical data from year 2008 corresponding to autumn 
season. The RS model (RSM) considers the passenger capacity in the trains with certain 
flexibility, as it attempts to provide a comfortable service for passengers which is also as 
compatible as possible with an efficient RS. 
In the RS literature it has been very common to assume that demand is known. Typically this 
will not be the case, the actual demand is in general unknown at the time at which decisions are 
made.  This means that the decisions on RS cannot be based on actual demand. The only 
information that is available is the partial knowledge of demand given through its distribution. 
It is known that the expected-value obtained replacing random demand may not produce very 
good solutions to the RS problem. In this paper we formulate the RS problem as a two-stage 
stochastic program with integer first stage and continuous second stage, hence, explicitly taking 
uncertainty into account in the decision process. 
The robustness in rapid transit networks is introduced considering the empty movements and 
shunting operations, these operations may be sometimes difficult to operate and they can easily 
malfunction causing a localized incidence that could propagate through the entire network due 
to cascading effects. This is the case of composition changes. They will be penalized to try to 
avoid them selectively due to the high probability of malfunction. Alternatively, we can 
introduce robustness by avoiding empty train movements at rush hours. Similarly, at rush 
hours, the number of passengers per time period arriving at stations' platforms may be huge, so, 
in order to avoid lack of capacity due to train services' delays, critical train services are 
introduced, which are forced to have a bigger capacity. 
This paper is organized as follows. A literature overview is given in Section 2. We describe the 
deterministic RS problem and model in Section 3. In Section 4 the stochastic RS model is 
defined. Section 5 contains the computational experience based on a test network and a realistic 
case provided by RENFE. Finally, we present our conclusions in Section 6. 
 
 
2. State of Art 
 
Alfieri, et al. (2006) determines the RS circulation for multiple RS types on a single line and on 
a single day. They use the concept of a transition graph. The problem is an integer multi-
commodity flow problem, where a feasible path in the transition graph is to be found at the 
same time for each train. The objective is to minimize the number of units or the carriage-
kilometers such the given passenger demand is satisfied. The above model is extended by 
Fioole, et al. (2006), with the possibility of combining and splitting of trains, as it happens in 
several locations in the Dutch timetable. They use an extended set of variables to get locally an 
improved description of the convex hull of the integer solutions. This method appears to 
improve the lower bounds substantially. Robustness is considered by counting the number of 
composition changes. Maróti (2006) focuses on planning problems that arise at NS. He 
identifies tactical, operational and short-term rolling stock planning problems and develops 
operations research models for describing them. Then, he analyses the considered models, 
investigates their computational complexity and proposes solution methods. 
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The allocation of RS units to the French TGV trains is studied by Ben-Khedher, et al. (1998). 
The RS circulation must be adjusted to the latest demand known from the seat reservation 
system. Therefore, this problem has a strong re-scheduling component. The objective is to 
maximize the expected profit for the company. A RS circulation problem related to the 
circulation of ICE train units in the German network was described by Mellouli and Suhl 
(2007). In this case, the required capacities of the trains are known a priori. Carriages and 
locomotives have first to be combined into train units of certain pre-specified groups, and these 
train units have to be routed then through the network in an optimal way. The problem is 
modeled as an integer multi-commodity flow problem on a multiple-layered network. Cadarso 
and Marín (2011) define a model to study a suburban rapid transit RS with convoys formed by 
three cars of the same type. The trains may be composed of one or two convoys in a dense 
network to attend an asymmetric demand and scheduling. 
Problems with uncertain coefficients can be solved by stochastic programming techniques.  
Solutions approaches to stochastic programming have been studied in Rockafeller and Wets 
(1991). A difficulty in these approaches is to strike a proper balance between the terms of the 
objective function. One must achieve a tradeoff between the mean and variance of the solution, 
and deviations from feasibility under all scenarios. 
Books on stochastic programming are Birge and Louveaux (1997), Prékopa (1995) and  Kall 
(2005), the last of which is the one that is most easily accessible. The first two give more 
technical insight and are more comprehensive. A research survey on various aspects of 
stochastic programming is given in Ruszczynski and Shapiro (2003). 
 
 
3. Deterministic Rolling Stock Problem in Rapid Transit Networks 
 
In this section, the RS problem is described. First, the rapid transit network is introduced. Next, 
we describe the train services. Then, we introduce the passenger demand. 
 
3.1 The Rapid Transit Network 
In the network we can distinguish two main different types of stations represented by s ε S. The 
first type is characterized by the fact that train services only attend passenger demand. The 
second type is called depot station. In these, shunting operations can also be performed, that is, 
there exists a depot attached to the passenger station where trains are driven to be parked or to 
perform shunting operations. 
The existing infrastructure linking different stations are represented by arcs, a ε A. Between 
two stations two different arcs exist, the first one of the senses of the movement and the second 
one in the opposite. Therefore, every arc a is defined by its departure and arrival station and by 
its length (e.g., in kilometers). 
The planning time is discretized into time periods, t ε T. Due to the high train frequencies, the 
duration of a time period is set to one minute. The previous physical network is replicated as 
many times as time periods exist in the planning period (e.g., 20 hours). 
 
 
3.2 Train Services 
Once the space-time network is defined, train services within the network are known. Each 
train service is represented by l ε L. Train services are defined as commercial trains operating 
in the network to attend passenger demand. They are characterized by: their departure depot 
station; their arrival depot station; every arc they come through, defined by a ε Al ⊂  A; and, 
their departure time. 
Each RS material (type of train) m ε M must be assigned to a train service l. Since a train 
service starting in one line must stay in the same line until it finishes the material assigned must 
be equal for the entire train service, that is, different material cannot be mixed to form 
other/new train services. 
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As mentioned before, different cars and locomotives types exist, and naturally, a carriage 
cannot move without a locomotive. In order to enable train movement carriages are attached to 
locomotives of the same material. When locomotives are attached to both sides of the carriage a 
convoy is obtained, which can move in both directions. The composition c ε C assigned to a 
train service will be given by the number of convoys forming the train service, being always 
from the same material. A train type and composition is given by m,c ε M, C. 
 
 
3.3 Passenger Demand 
The passenger demand for this problem is treated as a passenger flow ga,l  through each arc a 
belonging to each train service l. In the deterministic RS the passenger flow is obtained from 
historical data under normal conditions, that is, assuming that the train services matched the 
designed timetable. In this case, the passenger flow ga,l  is  known. 
Under the above hypothesis, the model will treat the passengers under a centralized point of 
view, that is, only the operator criteria are optimized. However, since the proposed problem is a 
suburban rapid transit network problem, it is obvious that every passenger will have the choice 
of choosing any other available company or transportation mode. Thus, the operator has to 
factor in the passenger behavior in order to avoid losing passengers to other transportation 
companies. 
For each convoy formed by one material type m, the passenger capacity is known. There is a 
fixed seating passenger capacity, and then, the standing passenger capacity. For standing 
passenger capacity multiple possibilities arises. The aim is to obtain for every train service an 
adequate passenger capacity. This may be obtained with different configurations for standing 
passengers. It is considered that when the seating capacity is full and there are less than 3 
pax/m2 standing, there is a comfortable capacity. If this capacity is exceeded, the passengers 
above this level are only modestly penalized, and they are deemed passengers in excess. 
However, if standing passengers are below 4 pax/m2 standing they receive a medium penalty. 
This is due to the fact that the operator would like to obtain 3.5 pax/m2. Passengers exceeding 4 
pax/m2 standing are highly penalized because this situation is deemed uncomfortable. 
 
 
3.4 Robustness 
As mentioned before, robustness is introduced through composition changes and empty 
movements. 
When a composition change is performed, multiple failures can occur, forcing the train to be 
parked for a long time and causing an incident. Containment of cascading effects is easier if the 
incident occurs during off-peak hours when more RS material is available at the depot station. 
In our model, this is treated by harshly penalizing composition changes during rush hours (see 
coefficient ΰs,t , which depends on the station  s and the time period  t). 
Similarly, empty movements during rush hours complicate network network operation. 
Therefore, empty movements during rush hours are also heavily penalizaed. This idea is 
represented by the θs,s´,t coefficient, which penalizes empty movements between  depot stations 
s, s' within departure time period t. 
Another aspect that could be interpreted as robustness is the critical train. A small delay at 
departure time may change the actual passenger flow. A train service is considered a critical 
train if it comes through stations that have a large number of passengers in a given time period 
arriving at the platform during rush hours. This is reflected in our model through a greater 
penalty per passenger in excess for these train services, according to the operator's wishes.  
Finally, the system is made more robust by assigning only one material type per line (i.e., for 
every train service operating the same line, the material must be equal). This constraint allows 
for all material on one line to be swapped between different train services at depot stations 
serving that line. 
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3.5 The Deterministic Rolling Stock Model 
In the RS model (RSM) the type and composition to form the train services are determined. 
The convoys are usually formed by three cars of the same type. Convoys from different types 
are not compatible and they cannot be mixed in the same train. 
In the RS model, the relationships between the data and variables are considered within a 
directed space-time graph, G(S,A), where S is the stations' set and A is the arc' set. Each arc a is 
defined by (s,t,s',t'), where s and s' are the  origin and destination nodes, t is the departure time, 
and t' is the arrival time. This is, t'=t+ta, where ta is the arc train time to move from s to s'. It is 
assumed that this time is known and fixed for each arc. This means that in the RSM where an 
arc is denoted by a, this may be understood as a=(s,s',t). 
The RSM arises as an extension of the model proposed in Cadarso and Marín (2011). In the 
model presented in this paper, special attention is given to shunting in depot stations and 
robustness aspects. The RSM mathematical formulation follows: 
 
-  Sets: 
• L(l): train services set. Each train service is characterized by an origin, a destination and a   

departure time. 
• T(t): time periods set. 
• S(s): stations set. 
• A(a): arcs set. 
• M(m): convoy types set. 
• C(c): convoy number set. A convoy is a carriage composition. It can move in both 

directions. However, a carriage needs a locomotive to move. The index of this set is the 
number of convoys composing the train. 

• Al(a,l): = 1, if  arc a is used by the train service l; = 0, otherwise. 
• Sl(s,l): = 1, if  station s has the minimum platform length in service l; = 0, otherwise. 
• Sc(s): depot stations set. 
 

- Parameters: 
• cm,c : operating cost per rolled kilometer of convoy type m using c convoys. 
• icm : convoy of type m investment cost. 
• pena,l

3-4: penalty per passenger in excess between 3 and 4 pax/m2 in arc a and train service l. 
• pena,l

4-10: penalty per passenger in excess between 4 and 10 pax/m2 in arc a and train service 
l. 

• θs,s´,t: penalty for empty movement between deposit stations s,s' with departure time period 
t. 

• ΰs,t: cost for composition change in station s and time period t. 
• ga,l: expected passenger flow in arc a used by train service l. 
• qm

3: passenger capacity (seating+standing) for 3 pax/m2 configuration in convoys of type 
m. 

• qm
4: passenger capacity (seating+standing) for 4 pax/m2 configuration in convoys of type 

m. 
• qm

10: passenger capacity (seating+standing) for 10 pax/m2 configuration in convoys of type 
m. This is a large number in order to avoid infeasible solutions. 

• oc: ordinal of c. 
• Kml: kilometers rolled by train service l. 
 
- Variables: 
• xl,m,c: = 1, if train service l uses convoy type and composition (m,c); = 0, otherwise. 
• ynm: integer variable, number of convoy type m to buy. 
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• πa,l
3-4 : positive variable, number of passengers in excess between 3 and 4 pax/m2 that use 

the train service l at arc a. 
• πa,l

4-10: positive variable, number of passengers in excess between 4 and 10 pax/m2 that use 
the train set l at arc a. 

• ccs,t
m,c: = 1, if a composition change is performed at station s at period t from type and 

composition (m,c); = 0, otherwise. 
• ems,s't

m,c: =1, if empty movement from s to s' is started at station s at period t, with type and 
composition (m,c); = 0, otherwise. 

 
The RSM for rapid transit networks can be formulated as multicommodity flow model 
presented in the next paragraphs. 
 
 
3.6 Objective Function 
 
            min  z = ∑∑∑

∈ ∈ ∈Ll Mm Cc

cm,c.kml.xl,m,c + ∑ ∑∑∑
∈ ∈ ∈ ∈Scss Tt Mm Cc´,

θs,s ,́t.cm,c.kms,s´ sem,s ,́t
m,c + 

                           ∑∑∑∑
∈ ∈ ∈ ∈Scs Tt Mm Cc

ΰs,t.ccs,t
m,c +  

                           ∑
∈Mm

icm.ynm + ∑∑
∈ ∈Ll Ala

pena,l
3-4

.πa,l
3-4 +  ∑∑

∈ ∈Ll Ala

pena,l
4-10.πa,l

4-10 

 
 
In the objective function, different costs are minimized. First, commercial train services' 
operating costs (TSOC) are minimized. In the second term, empty movements' operating costs 
(EMOC) are also minimized. They are equal to those related with commercial service trains. 
However, the coefficient θs,s´t increases these costs for some empty movements in order to 
introduce robustness in the system. Another shunting cost (CCC) is also minimized in the third 
term, related to composition changes. Through coefficient ΰs,t, the composition change cost 
depending on station and time period is introduced. Minimizing the composition changes, 
robustness is introduced because they usually malfunction. A special cost (NTC) is introduced 
in the fourth term to take into account the possibility of buying new material. For 
computational purposes, this is equivalent to an infinity cost in order to avoid infeasibilities in 
the model. Finally, costs related to passengers in excess are introduced.  A first cost (EDP1) 
appears for standing passengers between 3 pax/m2 and 4 pax/m2. Then, another cost (EDP2) for 
standing passengers between 4 pax/m2 and 10 pax/m2. Both terms contribute to minimize the 
number of passenger in excess. 
Decision variables are subject to the demand and other constraints 
 
 
3.7 Demand Constraints  
 
                    ∑ ∑∈ ∈Mm Cc

oc.qm
3.xl,m,c ≥ ga,l – πa,l

3-4 – πa,l
4-10,       ∀ l ε L, a ε Al,     

             πa,l
3-4  ≤  ∑ ∑∈ ∈Mm Cc

oc.(qm
4 – qm

3). xl,m,c,           ∀ l ε L, a ε Al,   

  
            πa,l

4-10  ≤ ∑ ∑∈ ∈Mm Cc
oc.(qm

10 – qm
4). xl,m,c,           ∀ l ε L, a ε Al 

   
The first constraint ensures that the assigned capacity to each train service is enough to satisfy 
demand requirements for passengers in 3 pax/m2. If the capacity is not enough, passengers in 
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excess are calculated by the constraint. These passengers are limited in number by the second 
and third constraints, one for each group of passengers. 
Other constraints are the train service, the material and the shunting constraints. These 
constraints may be study in the reference described by Cadarso and Marín (2011). 
 
  
4. Stochastic Rolling Stock 
 
So far, we only considered the deterministic Rolling Stock, where the assumption that the 
demand is known will not be justified since uncertainty is almost always an inherent feature of 
the railway operations involving the assessment of future demand. The demand is highly 
uncertain, so expected demand values may not reflect properly the final demand realization. 
Hence, we explicitly consider several potential market scenarios in making decisions. This 
future scenario based concepts lead naturally to a two-stage stochastic approach. The scenarios 
must reflect the different distribution of the demand (disaggregated by arcs and periods) for 
each day of the week. 
In this section we explicitly take this uncertainty into account by formulating the RS problem 
as a two-stage stochastic program with integer first stage and continuous second stage. 
The probability space is often modeled as a finite set of scenarios. Then, in principle, a linear 
optimization problem with stochastic input data, chance constraints and some stochastic 
objective function is a linear program itself. But the size of the original program is multiplied 
by the number of scenarios. 
In the stochastic model, the time is modeled discretely by means of stages, corresponding to the 
available information. Each step decisions can be made after observing the realizations of the 
random parameters. If all uncertainty is resolved at the same moment, this is captured by a 
recourse model with two stages: present and future, and such models are known as two-stage 
stochastic programming models. The objective is minimizing the total expected cost. 
We consider, first stochastic RSM (SRSM) as a classical two stage stochastic programming 
with fixed recourses, second the SRSM is formulated. 
 
 
4.1 The Stochastic RS model as a two Stage Stochastic Mixed-Integer Programming 
The fact that demand is not known with certainty is incorporated in the RS problem by 
allowing demand in each arc to depend on the outcome of some random variable. The number 
of RS to assign on the network must be decided in advance to the point in time at which they 
are actually installed and operated. The routing of passengers is naturally postponed until the 
actual realization of the demand is observed. 
Hence decisions can be split in two: first stage decisions x based solely on the demand 
information given by its distribution. The first stage decision variable x is defined by the 
variables x, em, yt, yn, cc  of the RSM and a second stage decisions variable y defined by the 
variables πa,l

3-4,w and πa,l
4-5,w of the RSM determined after arc demand g(w) has been observed. 

The classical two stage stochastic linear program with fixed recourse is the problem of finding: 
 
                                                 min  z = cTx + EwεΩ [Q(x,w)]  
                       subject to: 
                                                    Ax  = b,  
                                       W(w) y(w)  =  g(w) - T(w) x,   
                                                  x ε X = {0,1}n,  
                                                   y(w) ≥ 0. 
 
Corresponding to x are the first stage vectors and matrices c, b, and A, where c are the RSM 
objective function coefficients of the variable x.  
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In the second stage, a number of random events w ε Ω may realize. For a given realization w, 
the second stage problem data q(w), g(w), W(w) and T(w) become known, where q are the 
RSM objective function coefficients (pen1-4, pen4-10) of the variable y. Then, the second stage 
decision y(w) must be made. 
The objective function of the stochastic RS model contains a deterministic term cTx and the 
expectation of the second stage objective Q(x,w) taken over all realizations of the random event 
w. This second stage is the more difficult one because, for each w, the value yw is the solution 
of a linear program. To stress this fact,  a deterministic equivalent program can be used. For a 
given realization w, let 
 
                             Q(x,w) = miny{q(w)T y ; W(w) y = g(w) - T(w) x; y ≥ 0}  
 
be the second stage value function. 
We assume that the random vector ξ has finite support. Let e=1,...,E index its possible 
realizations and let pe be their probabilities. Under this assumption, we now write the 
deterministic equivalent program, in the extensive form: 
 
                                               min  z = cT x + ∑

∈Ee

peqe
Tye 

                               subject to: 
                                                         Ax = b,   
                                              We ye = ge -  Te x,  ∀ e ε E   
                                                          x ε X = {0,1}n,  
                                                     ye ≥ 0,               ∀ e ε E.   
  
 
4.2 Stochastic RS model 
In this way, the deterministic equivalent problem to the Stochastic RSM (SRSM) would be 
similar to that introduced by demand constraints of the RS model,  but now considering the 
different possible realizations. Thus, some RS parameters and variables will depend on the 
scenario index e ε E. The SRSM arises as follows: 
 
• Sets: 
 
             E(e): finite  scenarios' set. 
 
• Parameters: 
 
              ga,j

e: expected passenger flow in arc a using the train service l at scenario e. 
              pe: probability of scenario e. 
              pena,l

3-4,e : penalty  pe r passenger  in  excess between 3 and 4 pax/m2  in arc a and    
              train service l at scenario e. 
              pena,l

4-10,e  : penalty   per  passenger in excess  between   4 and 10  pax/m2 in arc a       
              and train service l at scenario e. 
 
 
• Variables: 
 
              πa,l

3-4,e :  positive variable, number  of  passengers in excess  between 3 and 4 of  
              scenario e, pax/m2 that use the train service l at arc a. 
              πa,l

4-10,e :  positive variable, number of passengers in excess between  4 and 10 of   
              scenario e, pax/m2 that use the train service l at arc a. 
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4.2.1 Objective Function 
 

      min z = ∑∑∑
∈ ∈ ∈Ll Mm Cc

cm,c. kml . xl,m,c + ∑ ∑∑∑
∈ ∈ ∈ ∈Scss Tt Mm Cc´,

θs,s ,́t. cm,c. kms,s´. sem,s t́
m,c + 

                                 ∑∑∑∑
∈ ∈ ∈ ∈Scs Tt Mm Cc

ΰs,t. ccs,t
m,c + ∑

∈Mm

icm. ynm + 

                       ∑∑∑
∈ ∈ ∈Cc Ll Ala

pe. pena,l
3-4,e. πa,l

3-4,e + ∑∑∑
∈ ∈ ∈Cc Ll Ala

pe. pena,l
4-10,e. πa,l

4-10,e     

 
                  subject to: 
 
4.2.2 Demand Constraints 
    
                   ga,l

e_- πa,l
3-4,e  - πa,l

4-10,e ≤ ∑ ∑∈ ∈Mm Cc
oc.qm

3.xl,m,c,       ∀ l ε L, a ε Al, e ε E   

                              πa,l
3-4,e ≤ ∑ ∑∈ ∈Mm Cc

oc.(qm
4 – qm

3).xl,m,c,               ∀ l ε L, a ε Al, eε E   

                    πa,l
4-10,e ≤ ∑ ∑∈ ∈Mm Cc

oc.(qm
10 – qm

4).xl,m,c,         ∀ l ε L, a ε Al, eε E   

  
4.2.3 Other Constraints 
The rest of constraints are the same, plus the new variable domain: 
 
                                    πa,l

3-4,e ε  R+ ,     ∀ l ε L, a ε Al, e ε E,  
                         πa,l

4-10,e ε  R+ ,    ∀ l ε L, a ε Al, e ε E 
 
 
5 Computational Experiences 
 
The network used in the tests is the line C5, a realistic case drawn from RENFE's regional 
network in Madrid, also known as "Cercanías Madrid".  We have chosen this line because it is 
the one with the highest frequency number in the network. RENFE performs the same planning 
during some days, for example one week: they perform identical commercial services, empty 
movements, shunting operations, etc. However, demand varies slightly from one day to the 
next one; in order to obtain an optimal planning for different demand scenarios, the previous 
SRSM is applied. Then, the planning is changed for the weekend. The presented study case has 
common depot stations. Our runs have been performed on a Personal Computer with an Intel 
Core2 Quad Q9950 CPU at 2.83 GHz and 8 GB of RAM, running under Windows Vista 64Bit, 
and our programs have been implemented in GAMS/Cplex 11.1. 
 
 
5.1 Study Case: Line C5 
Line C5 has more than 320 train services scheduled for a single day with frequencies in the 
order of 3 minutes at rush hours, equivalent to the rotation time in this line. The line is 
composed of 22 stations and 4 depot stations. There is one material type available and the train 
services can go in simple (one convoy) or double (two convoys) composition.  
The convoys for the material in Line C5 have determined characteristics, which we can see in 
Table 1. The train capacity is divided into seating and standing passengers. Seats are fixed but 
for standing passengers a density value is defined. In every convoy, for example, for a density 
of 3 pax/m2 we would have the 240 fixed seats plus 261 standing passengers, that is, 501 
passengers by convoy. But, for a density of 4 pax/m2, we would have the same 240 seats but a 
total of 588 passengers capacity.  



ROBUST ROLLING STOCK UNDER UNCERTAIN DEMAND IN RAPID TRANSIT NETWORKS 

 38  

For a daily planning time from 5:00 am. to 1:00 am. divided into one minute periods, we have 
1140 time periods. The rotation time is of 3 minutes for every depot station. 
We generate a number of demands, in these instances, with three demand scenarios, with the 
same probability of 1/3, such that one of the scenario is the expected of normal passenger flow, 
denoted by nd. The first line of table 2 corresponds to   (nd,1.20nd,0.80nd) case, the second 
lines corresponds to  (nd,1.30nd,0.70nd) case. The next lines 3 and 4 of table 2 correspond to 
(nd,1.40nd,0.60nd) and  (nd,1.50nd,0.50nd) respectively.  
For the stochastic case, the number of single equations is 112537, the number of single 
variables is 250032, the number of discrete variables is 70526 and the number of non zero 
elements is 890201. For the deterministic case, the number of single equations is 89317, of the 
single variables is 234552, of the discrete variables is 70526 and finally the number of the non 
zero elements is 797321. It can be seen that as the number of scenarios increasing, the 
stochastic problem increases the number of variables and the number of constraints. 
We present three sets of experiments. The first set of experiments, table 2, is on problems with 
stochastic demand processes. The second one, table 3, includes problems with deterministic 
demand processes. The penalties for these experiments are pena,l

3-4,e = 1 and pena,l
4-10,e = 5. The 

fourth table compares the stochastic demand instance with the above penalties and the pena,l
3-4,e 

= 3 and pena,l
4-10,e = 6 penalties. In all these sets of experiments, the running times, given in 

seconds, are not shown because of the low computational times. 
 
 

Table 1: Convoy Capacity and Length 
Material Type Seats Standing Density (Pax/m2) Length (m) 

  261 3  
m1 240 348 4 80 

  870 10  
 
 

Table 2: Computational Results for the Stochastic Case 
# C # CC TSOC EMOC EDP1 EDP2 z 
67 22 85548.72 1320.24 4258.06 2742.63 94309.65 
69 20 89142.96 1124.64 6081.80 6575.42 103324.82 
72 20 93411.12 1350.32 8091.93 12257.19 115510.56 
72 18 95283.12 1425.20 11576.07 23941.50 132585.89 

 
 
The table 2 does not include the NTC cost, because of the respective variable ynm is zero, it 
means it is not necessary to buy convoy type m. Also, it is not included the CC cost for the 
relatively low value and almost constant.  
It can be seen from this table 2, that the value of z is greatly influenced by the commercial train 
services' operating costs (TSOC).  
It is noted from line 4, table 2, that we are using all the convoys available # C = 72, this is 
because of the high demand. 
Table 3 reports the stochastic case taking the second instance of table 2, that is, the demand 
scenarios are (nd,1.30nd,0.70nd). The deterministic cases are defined as Det1, Det2, Det3 
related to each demand scenario, and Mean, line 5, represents the mean taking the three 
scenarios with the respective probability.  From this table, it is observed that the values related 
to the Mean case are very similar to the Det1, which represents the expected passenger flow. 
When the demand is low, that is 0.70nd for the Det3 case, we only need 51 convoys and the 
cost (EDP2) for standing passengers between 4 pax/m2 and 10 pax/m2 is practically null. 
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Table 3: Computational Results for Stochastic and Deterministic Cases 
Cases # C # CC TSOC EMOC EDP1 EDP2 z 
Stoch 69 20 89142.96 1124.64 6081.80 6575.42 103324.82 
Det1 64 20 80099.76 1265.04 3079.00 475.00 85318.80 
Det2 72 22 93439.92 1198.72 12552.60 16050.50 123681.74 
Det3 51 6 65895.60 415.04 1786.10 7.00 68223.74 
Mean 64 20 80099.76 1265.04 3098.57 248.71 85112.08 

 
 
Now, when we are using the fourth table which compares different penalties for the  
(nd,1.30nd,0.70nd) case, practically all the values of the corresponding line of  pena,l

3-4,e = 3 and 
pena,l

4-10,e = 6 penalties are higher than the original penalties of our problem.  
 
 

Table 4: Computational Results for Stochastic Case with different Penalties 
Penalties # C # CC TSOC EMOC EDP1 EDP2 z 

1, 5 69 20 89142.96 1124.64 6081.80 6575.42 103324.82 
3, 6 72 22 93126.00 1198.72 13509.84 6396.59 114671.15 

 
 
6. Conclusions 
 
We have considered the robust rolling stock with uncertain demand in Rapid Transit Networks. 
We have investigated the stochastic rolling stock formulation and presented the computational 
results for several examples, with three scenario demand, using a realistic problem. The 
decision maker now has several options to decide what alternatives he has to make for solving 
the respective model. Certainly, as the number of scenarios increases, the decision maker has a 
better information of the related problem, but the number of variables and the number of 
constraints increases enormously, and the stochastic problem will be huge and may be almost 
imposible to solve it. If this is the case, some decomposition techniques could be used in order 
to reduce in some form the dimension of the problem. Finally, the computational approach 
allows us to explore many situations that will be considered for future research.  
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