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vpetrucci@ic.uff.br

Anand Subramanian

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156, São Domingos, 22210-240, Niterói, RJ
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Abstract

Increasingly, clusters of servers have been deployed in large data cen-
ters to support the development and implementation of many kinds of ser-
vices, having distinct workload demands that vary over time, in a scalable
and efficient computing environment. Emerging trends are utility/cloud
computing platforms, where many network services, implemented and
supported using server virtualization techniques, are hosted on a shared
cluster infrastructure of physical servers. The energy consumed to main-
tain these large server clusters became a very important concern, which in
turn, requires major investigation of optimization techniques to improve
the energy efficiency of their computing infrastructure.

In this work, we present a novel optimization approach that simultane-
ously deals with (1) CPU power-saving techniques combined with server
switching on/off mechanisms, (2) the case of server heterogeneity, (3) vir-
tualized server environments, (4) an efficient optimization method based
on column generation techniques. The key aspects of our approach are
the basis on rigorous and robust optimization techniques, given by high
quality solutions in short amount of processing time, and experimental
results on the cluster configuration problem for large-scale heterogeneous
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server clusters that can make use of virtualization techniques.

Keywords: Column generation, Energy management, Server cluster vir-
tualization.

Resumo

De maneira crescente, clusters de servidores têm sido empregados
no apoio ao desenvolvimento e implementação de uma grande variedade
de serviços, com demandas por processamento distintas e variáveis ao
longo do tempo, em ambientes computacionais escaláveis e eficientes.
Plataformas conhecidas como computação em nuvem, emergem como uma
tendência no apoio e desenvolvimento de serviços em rede que são hospeda-
dos e compartilhados em uma estrutura de servidores f́ısicos através de
técnicas de virtualização. A energia consumida para manter tais clus-
ters de servidores se tornou uma importante questão de interesse que,
por sua vez, requer investigação no que compete à aplicação de técnicas
de otimização com o objetivo de aprimorar a eficiência energética de tais
infraestruturas computacionais.

Neste trabalho, é apresentada uma nova abordagem baseada em otimi-
zação que lida simultaneamente com (1) técnicas de economia de energia
em CPU combinadas com mecanismos de ligar/desligar servidores, (2) o
caso da heterogeneidade dos servidores, (3) ambientes de servidores vir-
tualizados e (4) um método eficiente de otimização baseado em técnicas
de geração de colunas. Os aspectos principais da nossa abordagem se
baseiam em técnicas robustas de otimização, ao obter soluções de qual-
idade em baixo tempo computacional, além de uma série de resultados
experimentais no problema de configuração de clusters de larga escala
com servidores heterogêneos que utilizam técnicas de virtualização.

Palavras-Chave: Geração de colunas, Gerenciamento de energia, Vir-
tualização de clusters de servidores.

1 Introduction

An increasing number of clusters of servers have been deployed in large
data centers to support the development and implementation of many kinds of
services supporting different applications in a scalable and efficient computing
environment, for example, focused on Web-based applications. A typical server
cluster is a distributed system that consists of hundreds or thousands of ma-
chines linked by a fast network [9]. These cluster architectures are becoming
common in utility/cloud computing platforms [11, 20], such as Amazon EC2
and Google AppEngine. In these platforms, the network services are mostly
hosted on several shared physical servers and can have distinct workloads that
vary over time.

These cluster platforms usually have great processing and performance de-
mands, incurring in high energy costs and indirectly contributing to increase
CO2 generation and then to the environmental deterioration [27]. The energy
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consumed to maintain these large data centers became a very important con-
cern, which in turn, requires major investigation of optimization techniques to
improve the energy efficiency of their computing infrastructure [6, 16, 34].

To support the execution of multiple independent network services, modern
server cluster platforms (also known as cloud computing) rely on virtualization
techniques to enable the usage of different virtual machines (VMs) — operating
system plus software applications — on a single physical server. Server virtual-
ization has been widely adopted in data centers around the world for improving
resource usage efficiency; particularly helping to make these computing environ-
ments more energy-efficient. Several virtual machine monitors or hypervisors,
which act as a layer between the virtual machine and the actual hardware, have
been developed to support server virtualization, such as Xen [13] and VMware
[19].

The adoption of virtualization technologies for power-aware optimization in
server clusters turns out to be a challenging research topic. Specifically, the
ability to dynamically distribute server workloads in a virtualized server envi-
ronment allows for turning off physical machines during periods of low activity,
and bringing them back up when the demand increases. Moreover, server on/off
mechanisms can be combined with CPU DVFS (Dynamic Voltage and Frequency
Scaling), which is a technique that consists of varying the frequency and volt-
age of the CPU at runtime according to processing needs, in order to provide
even better power optimizations. Examples of DVFS capabilities implemented
by current microprocessors are Intel’s “Enhanced Speedstep Technology”, and
AMD’s “PowerNOW!”.

Recent studies show that servers in data centers are loaded between 10 and
50 percent of peak, with a CPU utilization that rarely surpasses 40 percent
[3]. Thus, the consolidation of the different workloads of services in a cluster,
using server virtualization techniques, can reduce energy consumption and in-
crease the utilization of physical servers [26, 37, 40]. In addition, techniques
for processors energy-saving, typically considered major consumers of power
in a server, have been widely used in the literature [5, 22, 35]. However, to
our knowledge, none of research studies currently integrate and evaluate these
two main techniques for energy-saving in an optimization-based approach for
virtualized heterogeneous server environments.

The case of heterogeneity in server cluster was addressed by [21]. However,
their approach considers a non virtualized cluster and solves a different opti-
mization problem. Some optimization approaches, based on the bin packing
problem, for configuring virtualized servers are described in the literature, such
as [7, 24]. However, their models are not designed for power-aware optimization.
[40] present a two-layer control architecture aimed at providing power-efficient
real-time guarantees for virtualized computing environments. Their work relies
on a sound control theory based framework, but does not address optimizations
for server on/off mechanisms and virtual machine allocation in a server cluster
context. A heuristic-based solution for the power-aware consolidation problem
of virtualized clusters, without adopting DVFS, is presented in [37], but it does
not show any analysis and guarantees to find solutions that are at least near to
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the optimal.
A dynamic resource provisioning framework is developed in [26] based on

lookahead control. Their approach does not consider DVFS, but the proposed
optimization controller addresses attractive issues, such as switching machines
costs (i.e., overhead of turning servers on and off) and predictive configura-
tion model. A power-aware migration framework for virtualized HPC (High-
performance computing) applications, which accounts for migration costs during
virtual machine reconfigurations, is presented in [39]. Similarly to our approach,
it relies on virtualization techniques used for dynamic consolidation, although
the application domains are different and DVFS technique is not employed.

An approach based on DVFS is presented in [22] for power optimization and
end-to-end delay control in multi-tier web servers. Recent approaches, such as
presented in [5, 15, 23, 25, 35, 36] also rely on DVFS techniques and include
server on/off mechanisms, based on the seminal papers of [30] and [10], for
power-aware optimizations. However, these approaches are not designed (and
not applicable) for virtualized server clusters. That is, they do not consider the
optimization of multiple service workloads in a shared cluster infrastructure.
The problem of optimally allocating a power budget among servers in a cluster
in order to minimize mean response time is described in [18]. In contrast to
our optimization goal, which minimizes the cluster power consumption while
meeting performance requirements, their problem poses a different optimization
goal and is not applied to a virtualized cluster. However, their models of server
power and performance to implement power management techniques are similar
to ours.

It should be noted that solving the power optimization problem to optimality
may be economically significant since a difference of 10% of power cost for
running a large-scale data center can be worth a lot of money per year for a
business. An optimization approach at least should provide some guarantees on
how far the solution can be from the optimal. Most of related works found in
the literature do not provide such analysis and assurances.

To the best of our knowledge, this is a novel approach that simultaneously
deals with (1) the CPU DVFS technique combined with server on/off mecha-
nisms, (2) the case of server heterogeneity, (3) virtualized server environments,
(4) an efficient optimization approach based on Column Generation (CG) tech-
niques. The key aspects of our approach are the basis on rigorous and robust
optimization techniques, given by high quality solutions in short amount of
processing time, and experimental results on the cluster configuration problem
for large-scale heterogeneous server clusters that can make use of virtualization
techniques.

The remainder of the paper proceeds as follows. Section 2 formaly describes
the optimzation problem dealt in the current work. Section 3 explains the
proposed CG approach. Section 4 presents and discusses the results obtained.
Section 5 contains the concluding remarks of this work.
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2 Optimization Problem

The cluster optimization problem is to determine the most efficient con-
figuration of servers in terms of power consumption that meets the required
performance of services provided by multiple services on a shared cluster of
servers, as well as to decide on the best mapping of services to servers. The goal
of our optimization approach is to reduce power consumption in the virtualized
cluster while meeting service performance demands.

To make decisions on which CPU frequency a server must operate, our ap-
proach relies on DVFS technique available on current microprocessors. This
technique allows for dynamically adjusting the performance states (P-States) at
which the server can operate when the CPU is active, which consists of a pre-
defined set of frequency and voltage combinations. As an example of this power
management capability, Table 1 shows the P-states and power consumption for
the Intel Pentium M 1.6 GHz processor, whose data are available on a White
Paper from Intel1. Notice that performance state P0 is the highest P-state and
Pn is the lowest one.

Table 1: Example of CPU operating states and power consumption (Intel Pen-
tium M 1.6 GHz)

P-state Frequency (GHz) Voltage (V) Power (Watts)
P0 1.6 1.484 25
P1 1.4 1.42 17
P2 1.2 1.276 13
P3 1 1.164 10
P4 0.8 1.036 8
P5 0.6 0.956 6

With DVFS technique the processor’s frequency, which is associated with
the operating voltage, can be automatically adjusted at run time, decreasing
the power consumption and reducing the amount of heat generated on the chip.
Since DVFS enables the processor to change it’s operating frequency, it results
in a corresponding change in performance due to reduction in the number of
instructions the processor can issue in a given amount of time. This poses
relevant power and performance optimization trade-offs to consider in server
clusters, depending on the particular server hardware capabilities, the incoming
service demand workload, and power and performance management goals.

2.1 Cluster Configuration

A cluster configuration solution is given by (1) which servers must be active
and their respective CPU frequencies and (2) a corresponding mapping of the

1Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor: ftp://

download.intel.com/design/network/papers/30117401.pdf
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services (running on top of VMs) to physical servers. The cluster configuration
must be carefully employed in the cluster, considering individual service per-
formance levels, in order to guarantee QoS (Quality of Service) related to their
corresponding SLA’s (Service Level Agreements). The configuration problem
is far to be simple since large clusters include many heterogeneous machines
and each machine could have different capacity and power-consumption accord-
ing to the number of CPU cores, their frequencies, their specific devices, and so
forth. According to [21], server clusters are typically composed of heterogeneous
servers.

Additionally, the incoming workload of multiple services in a server cluster
can significantly change over time. This requires the optimization problem to
be solved periodically and the solution is used to configure the cluster. The
optimization algorithm proposed, thus, have a time-constrained processing re-
quirement, considering the usual cluster configuration control period (e.g., few
minutes).

To implement the optimization solution over time, considering that the clus-
ter services have individual time-varying workloads, we need an optimization
strategy to enable the virtualized server system to react to load variations and
adapt its configuration accordingly. We refer to [29] for the optimization con-
trol loop design and implementation, which relies on the underlying cluster
optimization problem investigated in this work.

2.2 Mathematical Formulation

The optimization problem of selecting the most efficient configuration of a
virtualized server cluster can be defined as follows: let N = {1, 2, ..., i, ..., n}
be the set of server types of the cluster, Si = {1, 2, ..., s, ..., qi} are the sets of
servers of type i ∈ N , and Fi = {1, 2, ..., j, ..., ri} are the sets of available CPU
frequencies for each server of type i ∈ N . Without lack of generality, we assume
that the frequencies in Fi, i ∈ N are in increasing order and, thus, ri is the
highest frequency of a server type i ∈ N . The set of services intended to run
on the server cluster is denoted by K = {1, 2, ..., k, ...,m}. Each server of type
i ∈ N running at a CPU frequency j ∈ Fi has a capacity (e.g., requests/s)
Dij and a cost (e.g., power consumption) given by Cij . The demand (e.g.,
requests/s) of each service k ∈ K is given by dk.

The decision variables are defined as follows: yisj is a binary variable which
indicates whether a server s ∈ Si of type i ∈ N is running at CPU frequency
j ∈ Fi, and xisjk is a binary variable which indicates if a service k ∈ K is
assigned to a server s ∈ Si of type i ∈ N running at CPU frequency j ∈ Fi.

The problem formulation as a ILP (Integer Linear Programming) problem
is thus given as follows:

(F1) z = Min
∑
i∈N

∑
s∈Si

∑
j∈Fi

Cijyisj (1)
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Subject to ∑
k∈K

dkxisjk ≤ Dijyisj ∀i ∈ N, s ∈ Si, j ∈ Fi (2)∑
i∈N

∑
s∈Si

∑
j∈Fi

xisjk = 1 ∀k ∈ K (3)

∑
j∈Fi

yisj ≤ 1 ∀i ∈ N, s ∈ Si (4)

xisjk = {0, 1} ∀i ∈ N, s ∈ Si, j ∈ Fi, k ∈ K (5)

yisj = {0, 1} ∀i ∈ N, s ∈ Si, j ∈ Fi. (6)

The objective function given by (1) aims to find a cluster configuration
that minimizes the operational cost of the server cluster in terms of power
consumption. Constraints (2) avoid the capacity of a server s ∈ Si of type
i ∈ N running at CPU frequency j ∈ Fi to be exceeded. Constraints (3) ensure
that each service k ∈ K is assigned to run in the cluster. The constraints given
by (4) state that a server of type i ∈ N is allowed to run at most in one CPU
frequency j ∈ Fi. The constraints (5) and (6) define the domain of the variables
of the problem.

The cluster configuration problem is NP-hard, since it can be seen as a
generalization of the 1-D Variable-sized Bin Packing Problem, which is known
to be NP-hard [17], when each type of server has an unlimited number and
only a single frequency available. Clearly, it is not practical to use F1 directly
for configuring a large cluster, since the number of variables and constraints
would be far too large to be handled by a Mixed Integer Programming (MIP)
solver. However, in order to obtain a Lower Bound (LB) on the optimal power
consumption, we propose solving a much smaller ILP relaxation of the problem,
where demands are allowed to be split into different servers. Note that this case
of service fragmentation is not a valid assumption to our optimization problem.
Let vij be an integer variable that indicates how many servers of type i ∈ N
run at frequency j ∈ Fi. The Model F2 is as follows.

(F2) z = Min
∑
i∈N

∑
j∈Fi

Cijvij (7)

Subject to ∑
j∈Fi

vij ≤ qi ∀i ∈ N (8)

∑
i∈N

∑
j∈Fi

Dijvij ≥
∑
k∈K

dk (9)

vij ∈ Z+ ∀i ∈ N, j ∈ Fi. (10)

The objective function (7) minimizes the sum of the costs. Constraints (8)
ensure that the number of servers of type i ∈ N does not exceed qi. Constraint
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(9) guarantees that the total capacity of all servers is greater or equal than the
sum of the demands of all services. Constraints (10) define the domain of the
decision variables. It can be proven that zF2

≤ zF1
. Although this formulation

is not meant to provide a feasible solution to our problem, its solution cost can
be used to measure the quality of a given feasible solution.

3 Column Generation Approach

In this section we describe our proposed solution approach which aims at
obtaining integer feasible solutions via CG based algorithms. As the numbers of
servers and services increase, the direct use of formulation F1 to obtain integer
feasible solutions for the problem becomes prohibitive, due to its large number
of variables and constraints. To handle this issue, we can reformulate the prob-
lem applying a Dantzig-Wolfe Decomposition [12]. The linear relaxation of the
resulting master problem can be solved by a CG based algorithm. To use this
approach, the following definitions must be considered:

Definition 1. We define a pattern as the incidence vector in {0, 1}m associated
to a subset of K. For a pattern p, pk denotes the k-th component of p. Define
P (i) as the set of all feasible patterns for a server of type i, i.e., those such that

∑
k∈K

pkdk ≤ Diri ∀i ∈ N, (11)

where Diri is the maximum capacity of a server of type i ∈ N and is related to
its highest frequency.

Definition 2. f(p, i) is the lowest frequency such that
∑

k∈K pkdk ≤ Dif(p,i).

Given the above, the reformulation of the problem by Dantzig-Wolfe Decom-
position results in the following problem:

Min
∑
i∈N

∑
p∈P (i)

Cif(p,i)λip (12)

Subject to ∑
i∈N

∑
p∈P (i)

pkλip = 1 ∀k ∈ K (13)

∑
p∈P (i)

λip ≤ qi ∀i ∈ N (14)

λip = {0, 1} ∀i ∈ N, p ∈ P (i). (15)

In this formulation, a binary variable λip is 1 if the services in the pattern
p ∈ P (i) are assigned to a server of type i ∈ N running at frequency f(p, i).
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3.1 Row Aggregation

Formulation (12-15) has less rows than F1. In order to obtain an even more
compact formulation, we can aggregate the rows that correspond to services
with identical demands. Therefore, we define K ′ = {1, 2, ..., k, ...,m′} as the set
of indices of the groups of aggregated services and nk as the number of services
with demand dk. In addition, the set K ′ is sorted in decreasing order according
to the values of demands dk, k ∈ K ′. Furthermore, we rewrite Definition 1 as
follows.

Definition 3. We define a pattern as the incidence vector in Zm′

+ associated
to a subset of K ′. For a pattern p, pk ≤ nk denotes the k-th component of p.
Define P (i) as the set of all feasible patterns for a server of type i, i.e., those
such that

∑
k∈K′

pkdk ≤ Diri ∀i ∈ N, (16)

where Diri is the maximum capacity of a server of type i ∈ N and is related to
its highest frequency.

Thus, by using this row aggregation scheme we can replace constraints (13)
with (17). Moreover, relaxing the integrality of λ variables leads us to the so-
called Master Problem (MP) which is defined by (12), (14), (17) and (18). Note
that constraints (17) are also relaxed to greater than or equal, since this does
not change the lower bound provided by MP, but it helps on the convergence of
the CG.

∑
i∈N

∑
p∈P (i)

pkλip ≥ nk ∀k ∈ K ′ (17)

λip ≥ 0 ∀i ∈ N, p ∈ P (i). (18)

This resulting formulation is a generalization of the Multiple Length Cutting-
Stock Problem [1, 4].

3.2 Exchange Variables

In addition to the row aggregation scheme, the convergence of the CG algo-
rithm can be even more enhanced if we add a small number of exchange variables
to MP resulting in a extended formulation for the problem.

The additional variables tk ∈ Z+ represent the replacement of a certain
number of aggregated services k by the same amount of aggregated services
k − 1, k ∈ K ′. These variables always exchange a service with a given demand
by another one immediately smaller, which in turn can be exchanged similarly
by another one and so forth. As a result, each λ variable added to the MP,
normally used in solutions that have exactly that unique pattern, can now be
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used in other solutions that make use of different patterns with smaller demands.
This is equivalent to add inequalities to the dual problem, i.e., restricting its
solution space, as described by [38].

We now modify the MP by replacing (17) with (19) and by adding the domain
constraints (20), leading us to an extended master problem called MPex.

∑
i∈N

∑
p∈P (i)

pkλip − tk + tk−1 ≥ nk ∀k ∈ K ′ (19)

tk ≥ 0 ∀k ∈ K ′. (20)

3.3 Restricted Master Problem (RMP)

Due to the large number of columns in a master problem obtained by
Dantzig-Wolfe Decomposition we should deal implicitly with such columns,
which is the fundamental idea of the CG algorithm. Hence, we consider only a
small version of the master problem, called RMP, which has a limited number
of columns sufficient to hold feasibility. The columns are generated by solving a
subproblem, known as pricing subproblem, and only the “interesting” ones are
added to RMP.

3.4 Pricing Subproblem

Let αi, i ∈ N , be the dual variables associated to constraints (14) and let
πk, k ∈ K ′, be the dual variables associated to constraints (17), in the case of
MP, and to constraints (19), in the case of MPex. From Definitions 2 and 3,
for each pair (i, j), i ∈ N and j ∈ Fi, we can formulate the pricing subproblem
SPij as follows.

(SPij) Min Cij − αi −
∑
k∈K′

πkpk (21)

Subject to ∑
k∈K′

dkpk ≤ Dij (22)

pk ∈ Z+ ∀k ∈ K ′. (23)

This problem can be seen as an Integer Knapsack Problem and, in spite
of being NP-hard, it is known to be quite well solved by pseudo-polynomial
algorithms. The solution given by SPij in terms of pk, k ∈ K ′, represents a
pattern for the servers of type i ∈ N running at a CPU frequency j ∈ Fi. In a
CG algorithm, the columns are generated by the pricing subproblem and added
to the RMP only if the value of the objective function (21), which represents
the reduced cost of the column, is negative.

10
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3.5 Generating Initial Basis

In order to generate an initial feasible basis for the CG algorithms, we devel-
oped a simple greedy heuristic (Alg. 1) which works as follows. Let SL be a list
composed of all the servers and let AL be a list composed of all the application
services (line 3). At first, we sort SL according to the maximum capacities and
AL according to the demands, both in descending order (line 4). Next, while AL
is not empty, we try to assign the remaining services to the maximum frequency
of the current first element of SL, always giving preference to those with larger
demands (lines 7-14). Finally, we add the λ variables (patterns) associated to
the complete feasible solution of the problem (line 15).

Algorithm 1 GenerateInitialBasis()

1: RMP ← ∅
2: sol← ∅
3: Initialize Servers List (SL) and Application Services List (AL)
4: Sort SL and AL in descending order
5: while AL is not empty do
6: Remove the first element of SL (currentServer)
7: while at least one service k ∈ AL can be assigned to the maximum

frequency of currentServer do
8: for k = 1 . . . |AL| do
9: Try to assign element k ∈ AL to currentServer

10: end for
11: Update partial solution sol by including the assigned services
12: Update AL by removing the assigned services
13: end while
14: end while
15: Update RMP by adding the λ variables (patterns) associated to sol
16: return RMP

3.6 The Column Generation Algorithm

The pseudocode of the CG algorithm is presented in Alg. 2. We assume
that both the LP and SP (Knapsack Problem) solvers are black-boxes and that
the initial RMP basis is provided by the heuristic described in the previous
subsection. In the case of MPex, the exchange variables t must also be included
to the initial RMP. Let colsAdded be a boolean variable that has value true
if a column was added in a given iteration and false otherwise. We first solve
the initial RMP (line 3). While colsAdded is true, for each pair (i, j), i ∈ N ,
j ∈ Fi, we solve the corresponding SPij and, if necessary, we add the generated
columns and solve the updated RMP (lines 4-19).

11
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Algorithm 2 ColumnGeneration(RMP)

1: solSP ← ∅
2: colsAdded← true
3: sol← LPsolver(RMP)
4: while colsAdded do
5: colsAdded← false
6: for each type of server i ∈ N do
7: for each frequency j ∈ Fi do
8: Update SPij with the values of αi and πk, ∀k ∈ K
9: solSP ← SPsolver(SPij)

10: if f(solSP ) < 0 then
11: Add corresponding column λ to RMP
12: colsAdded← true
13: end if
14: end for
15: end for
16: if colsAdded then
17: sol← LPsolver(RMP)
18: end if
19: end while
20: return sol

3.7 Primal Heuristics

Two CG heuristics were developed for obtaining feasible primal solutions.
The first one is ILP-based, while the second one is LP-based.

3.7.1 Restricted Master Integer Program Heuristic (RMIPH)

The RMIPH is a straightforward approach that modifies the final Restricted
Master Linear Program (RMLP) by setting all variables to be integral and
solves the resulting Restricted Master Integer Program (RMIP). Nevertheless,
it is important to mention that the RMIP may not necessarily contain a feasible
integer solution. Also, this method strongly depends on a efficient MIP solver
for obtaining optimal/near-optimal solutions in an acceptable computational
time.

3.7.2 Rounding Heuristic (RH)

Unlike the RMIPH, the RH is not ILP-based and therefore it does not rely
on any MIP solver. The idea of this heuristic is to obtain a feasible integer
solution by rounding up the lower bound of the fractional variables of a CG
solution. The outline of the heuristic is presented in Alg. 3, where it can be
seen that the proposed solution approach has three steps: (i) generation of an
initial basis; (ii) construction of a feasible integer solution; and (iii) a refinement
procedure.
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Algorithm 3 RoundingHeuristic()

1: sol← ∅
2: RMP ← GenerateInitialBasis()
3: sol← Construction(RMP)
4: sol← Refinement(RMP, sol)
5: return sol

The pseudocode of the constructive procedure is presented in Alg. 4. In
this case, let i ∈ {1, . . . , |N |} be the index associated to a type of server and we
assume that the larger the value of i, the smaller is the capacity of the server
running at its highest CPU frequency. At first, we set i = |N | (line 1). Let
maxCols be the maximum number of columns allowed during the construction
phase and after preliminary experiments we adopted maxCols = 1000 (line 2).
Next, we build an initial solution, which is possibly fractional, by solving the CG
algorithm (line 3). In this case, the pricing subproblem is firstly solved using a
0-1 Knapsack solver and, when it is no more possible to add binary columns, we
then use an Integer Knapsack solver until the convergence of the GC algorithm.
While the solution is fractional we try to generate a feasible integer solution by
modifying the fractional solution of the CG (lines 4-18). If the CG solution is
infeasible or it is no more possible to round up the lower bound of at least one
λ variable in such a way that the constraints of the problem are not violated,
we unfix those variables that are associated with server i (lines 5-6). This is
done by restoring the bounds of the original λ variables that are associated
with server i, that is, λ ≥ 0. We then update the value of i by decreasing its
value or by setting i = |N | if i = 0 (lines 7-10). If a feasible fractional solution
is found we select a variable to round up according to the following criterion.
Let P be the set of variables that have fractional values in a CG solution. We
choose to round up the lower bound of the variable λp, p ∈ P, associated with
gmin = min{g(p) | ∀p ∈ P}, where g(p) = dλpe − λp (line 12). If the number
of columns of RMP is larger than maxCols we remove the columns associated
to the λ variables that are out of the basis (line 15). Finally, we solve the CG
algorithm (line 17). Here, in contrast to what occurs in line 3, we only use the
0-1 Knapsack solver.

A refinement procedure is applied to the solution obtained by the construc-
tive routine (see Alg. 5). The improvement approach works as follows. Let
RMP′ be a backup of the RMP basis (lines 2-3). For each server i ∈ N we
unfix the λ variables related to i and we call the constructive algorithm as an
attempt of producing an improved feasible integer solution (lines 4-11). In case
of improvement we update the best solution (lines 7-9). At the end of each
iteration we update RMP using the model stored in RMP′ (line 10). During the
refinement procedure, we only use the 0-1 Knapsack solver.
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Algorithm 4 Construction(RMP)

1: i← |N |
2: maxCols← 1000
3: sol← ColumnGeneration(RMP)
4: while sol is fractional do
5: if sol is infeasible or no more λ variables can be rounded up then
6: Update RMP by restoring the original bounds of those variables, i.e.

λ ≥ 0, associated to server i that are currently fixed
7: i← i− 1
8: if i = 0 then
9: i = |N |

10: end if
11: else
12: Update RMP by rounding up the lower bound of fractional variable λp

associated to gmin = min{dλpe − λp | ∀p ∈ P}
13: end if
14: if number of columns of RMP > maxCols then
15: Remove columns associated to λ variables that are out of the basis
16: end if
17: sol← ColumnGeneration(RMP)
18: end while
19: return sol

Algorithm 5 Refinement(RMP, sol)

1: sol∗ ← sol
2: Update RMP by removing columns associated to λ variables that are out

of the basis
3: RMP′ ← RMP
4: for each type of server i ∈ N do
5: Update RMP by restoring the original bounds of those variables, i.e. λ ≥

0, associated to server i that are currently fixed
6: sol← Construction(RMP)
7: if f(sol) < f(sol∗) then
8: sol∗ ← sol
9: end if

10: RMP← RMP′

11: end for
12: return sol∗

4 Computational Results

In this section we present the computational results obtained to evaluate
our optimization approach. As a first phase we provide real measurements of
power consumption and processing capacity for a set of server types, which are
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described in Section 4.1. These measurements are used as input data to guide
the generation of test instances introduced in Section 4.2. In Section 4.3 we
present and discuss the results obtained by the proposed solution approach in
the test instances generated.

4.1 Server capacity and power measurements

The test instances used to evaluate our approach are derived from power con-
sumption and processing capacity measurements of four different server types.
The server types used have different technologies including a wide range of
working frequencies. For each server type at each CPU frequency available, we
measured the average power consumption and processing capacity.

The processing capacity of a server is linearly proportional to its CPU fre-
quency. The power consumption of the server also increases with frequency,
but the curve follows a non-linear growth. Typically this curve starts with a
sub-linear growth, and from a certain point there is a shift in higher frequencies
and the growth would be approximately quadratic.

We measured AC power directly using the WattsUP Pro power meter with
1% accuracy [14]. The power measurements thus represent the whole machines,
not only their CPUs. Table 2 shows the power measured values for each type
of server used in our work.

Table 2: Power consumption (in Watts) for each server at each CPU frequency

Server type f1 f2 f3 f4 f5 f6 f7 f8 f9

Intel Core i7 154 158 163 168 175 181 189 198 211
AMD Phenom II X4 118 151 175 217 – – – – –
Intel Core2Duo 111 132 – – – – – – –
AMD Athlon 64 X2 88 106 111 121 132 146 161 180 –

The server processing capacity was measured, for each frequency available,
in terms of the number of web requests per second that the given server can
handle at maximum CPU utilization. The requests used in the experiments are
CPU-bound and consume a fixed amount of CPU time. To generate the server
benchmark workload, we used the httperf tool [28]. Table 3 shows the measured
values of processing capacity for the server types.

In our case, recording the average values for power and processing capacity
over a period of 2 minutes was sufficient to obtain a good average and low
standard deviation. Note that the case of web servers is similar to any other
CPU-intensive services in a cluster and different kinds of server capacity metrics
could be used, such as MFLOP (Million Floating Point Operations Per Second).
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Table 3: Processing capacity (in requests per second) for each server at each
CPU frequency

Server type f1 f2 f3 f4 f5 f6 f7 f8 f9

Intel Core i7 820 893 965 1033 1102 1171 1238 1304 1373
AMD Phenom II X4 300 792 938 1187 – – – – –
Intel Core2Duo 474 716 – – – – – – –
AMD Athlon 64 X2 128 230 256 279 303 329 353 378 –

4.2 Test instances

We generated a set of instances to evaluate our approach given the power
consumption and processing capacity measurements of the server types. Specif-
ically, to construct a test instance, we need the following data inputs:

• Number of server types;

• Number of servers for each type;

• Number of services to run in the cluster;

• The interval in which the demand values will be generated.

Each test instance has the following notation: ct-G-X-Y -Zw. The parameter
G specifies a given group of instances. The parameter X denotes the number
of server types in the cluster, where the number of services to run is given by
Y ∈ {1000, 2000, 4000}. The parameter Z ∈ {a, b, c} determines the discrete
interval in which the services demands were generated, where a = {1, ..., 100},
b = {20, ..., 100} and c = {50, ..., 100}. In fact, since there is usually a precision
limitation when estimating a service demand, in most cases it is reasonable
to consider that even when there are several thousands demands, the number
of distinct demand values do not grow beyond a few hundreds. Lastly, the
parameter w is used to make a distinction between instances with equal X, Y ,
and Z parameters.

Two groups of instances were generated, where each of these contains 18 test-
problems. In the fist group (G = 1), the number of CPU frequencies is associated
to each server type and such frequencies define the costs and capacities as can be
seen in Tables 2 and 3, respectively. Finally, the demand values for each service
were randomly selected within the specified interval. As for the second group
(G = 2), we divided the capacities of each type of server by a constant value,
in our case it was 5, and we multiplied the number of available servers of each
type also by this constant value. Thus, the difference between the two groups
of instances is the relationship between the service demands and the processing
capacities of the servers, so that this ratio is higher in instances of the second
group.
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4.3 Results and Discussion

The proposed algorithms were coded in C++ and the tests were executed in
an Intel Core i7 with 2.66 GHz and 4 GB of RAM running under Linux 64 bits.
Only a single thread was used in our experiments. Linear and integer programs
were solved using CPLEX 12.1, while pricing subproblems were solved using
the Minknap2 algorithm [31] for the 0-1 Knapsack problems and the Bouknap2

algorithm [32] for the Integer Knapsack problems.
In the tables presented hereafter, Instance denotes the test-problem, LB is

the lower bound obtained by the respective approach, Time indicates the CPU
time in seconds, Iter is the number of iterations of the CG, Cols corresponds
to the number of columns generated, Best LB is the best LB obtained, Gap
(%) denotes the gap between the UB and the best LB.

Table 4 illustrates the results obtained by the CG approaches and those
found by the formulation F2 in the first set of instances. It can be seen that F2

was able to produce better LBs in less computational time when compared to
MP and MPex. Moreover, we can observe that, except for the instance ct-1-4-
4000-b1, the CG based on MPex was always capable of generating less columns
and to perform less iterations than the one based on MP.

Table 4: Results obtained by F2 and the CG approaches in the first group of
instances

F2 MP MPexInstance
LB Time LB Time Iter Cols LB Time Iter Cols

ct-1-4-1000-a1 8748 <0.01 8742 1.02 135 1247 8742 0.45 118 494
ct-1-4-1000-a2 8237 <0.01 8231 0.75 113 1127 8231 0.39 103 448
ct-1-4-1000-b1 10105 <0.01 10103 0.23 73 650 10103 0.14 60 295
ct-1-4-1000-b2 10128 <0.01 10123 0.22 67 623 10123 0.14 53 265
ct-1-4-1000-c1 12961 <0.01 12955 0.03 31 210 12955 0.02 30 190
ct-1-4-1000-c2 12890 <0.01 12889 0.03 28 188 12889 0.02 27 177
ct-1-4-2000-a1 17109 <0.01 17104 0.18 56 486 17104 0.12 50 282
ct-1-4-2000-a2 17191 <0.01 17188 0.16 57 431 17188 0.14 56 303
ct-1-4-2000-b1 20541 <0.01 20535 0.02 31 235 20535 0.05 29 218
ct-1-4-2000-b2 20299 <0.01 20295 0.04 33 240 20295 0.04 30 222
ct-1-4-2000-c1 30582 <0.01 30579 0.03 16 293 30579 0.02 14 267
ct-1-4-2000-c2 30896 <0.01 30895 0.02 17 314 30895 0.03 15 275
ct-1-4-4000-a1 33913 <0.01 33907 0.06 30 281 33907 0.06 29 244
ct-1-4-4000-a2 34364 <0.01 34359 0.07 29 293 34359 0.07 28 248
ct-1-4-4000-b1 40946 <0.01 40944 0.04 24 294 40944 0.06 25 302
ct-1-4-4000-b2 40597 <0.01 40594 0.05 21 279 40594 0.04 19 273
ct-1-4-4000-c1 51809 <0.01 51805 0.03 25 401 51805 0.03 22 380
ct-1-4-4000-c2 51400 <0.01 51395 0.03 25 397 51395 0.04 24 385
Average <0.01 0.17 45.06 443.83 0.10 40.67 292.67

Table 5 shows the results found in the second group of instances. We can
observe that, in terms of LBs, F2 obtained the best values, except for the
instances ct-2-4-2000-c1 and ct-2-4-2000-c2. As for the number of columns and
iterations, we can notice that the CG based on MPex obtained, on average,
smaller values than those of MP.

From the results presented in Tables 4 and 5, we can verify that the inclusion
of the exchange variables helped to accelerate the convergence of the CG algo-

2The source code is available at www.diku.dk/~pisinger/codes.html
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Table 5: Results obtained by F2 and the CG approaches in the second group of
instances

F2 MP MPexInstance
LB Time LB Time Iter Cols LB Time Iter Cols

ct-2-4-1000-a1 43827 <0.01 43826 0.11 72 459 43826 0.14 77 445
ct-2-4-1000-a2 41272 <0.01 41268 0.13 75 437 41268 0.12 68 401
ct-2-4-1000-b1 50645 <0.01 50641 0.04 33 404 50641 0.07 37 408
ct-2-4-1000-b2 50743 <0.01 50741 0.04 36 413 50741 0.07 35 395
ct-2-4-1000-c1 64926 <0.01 64922 0.02 30 562 64922 0.03 28 527
ct-2-4-1000-c2 64597 <0.01 64594 0.03 35 591 64594 0.02 29 533
ct-2-4-2000-a1 85735 <0.01 85734 0.07 31 537 85734 0.06 30 531
ct-2-4-2000-a2 86157 <0.01 86155 0.07 37 573 86155 0.08 32 549
ct-2-4-2000-b1 102921 <0.01 102913 0.05 35 741 102913 0.06 32 712
ct-2-4-2000-b2 101720 <0.01 101712 0.06 29 705 101712 0.06 32 708
ct-2-4-2000-c1 153580 <0.01 154519 0.03 19 1126 154519 0.02 15 1086
ct-2-4-2000-c2 155183 <0.01 156179 0.02 18 1119 156179 0.04 17 1100
ct-2-4-4000-a1 169976 <0.01 169968 0.10 33 886 169968 0.09 33 886
ct-2-4-4000-a2 172240 <0.01 172232 0.08 32 898 172232 0.08 32 886
ct-2-4-4000-b1 205212 <0.01 205208 0.07 31 1213 205208 0.07 32 1210
ct-2-4-4000-b2 203468 <0.01 203455 0.07 33 1210 203455 0.07 31 1192
ct-2-4-4000-c1 259590 <0.01 259590 0.09 33 1838 259590 0.08 29 1795
ct-2-4-4000-c2 257546 <0.01 257535 0.08 32 1836 257535 0.08 29 1791
Average <0.01 0.06 35.78 863.78 0.07 34.33 841.94

rithm, since the number of iterations was smaller in almost all instances when
compared to the version without these variables. Also, the number of columns
generated was, on average, smaller when adding these variables to the master
problem.

Table 6 shows the results found by the heuristic approaches, within a time
limit of 10 seconds, in the first group of instances. We can observe that the RH
obtained the best UB in 10 of the 18 test instances with an average execution
time of 4.75 seconds compared to 9.73 seconds of the RMIPH.

Table 6: Results obtained by the proposed heuristics in the first group of in-
stances

RMIPH (MPex) RH
Instance Best LB

UB Time Gap (%) UB Time Gap (%)
ct-1-4-1000-a1 8748 8765 10.00 0.19 8828 6.58 0.91
ct-1-4-1000-a2 8237 8331 10.00 1.14 8262 6.33 0.30
ct-1-4-1000-b1 10105 10209 10.00 1.03 10139 2.73 0.34
ct-1-4-1000-b2 10128 10215 10.00 0.86 10224 4.09 0.95
ct-1-4-1000-c1 12961 12996 10.00 0.27 12979 1.06 0.14
ct-1-4-1000-c2 12890 12929 10.00 0.30 12911 1.33 0.16
ct-1-4-2000-a1 17109 17326 10.00 1.27 17233 5.77 0.72
ct-1-4-2000-a2 17191 17203 5.12 0.07 17250 12.12 0.34
ct-1-4-2000-b1 20541 20695 10.00 0.75 20588 4.50 0.23
ct-1-4-2000-b2 20299 20403 10.00 0.51 20418 3.58 0.59
ct-1-4-2000-c1 30582 30598 10.00 0.05 30607 1.35 0.08
ct-1-4-2000-c2 30896 30920 10.00 0.08 30951 1.76 0.18
ct-1-4-4000-a1 33913 34254 10.00 1.01 33965 9.66 0.15
ct-1-4-4000-a2 34364 34614 10.00 0.73 34510 9.75 0.42
ct-1-4-4000-b1 40946 41104 10.00 0.39 41065 5.09 0.29
ct-1-4-4000-b2 40597 40799 10.00 0.50 40735 7.53 0.34
ct-1-4-4000-c1 51809 51848 10.00 0.08 51889 1.08 0.15
ct-1-4-4000-c2 51400 51426 10.00 0.05 51455 1.23 0.11
Média 9.73 0.51 4.75 0.36

Table 7 presents the results obtained by the developed heuristics, also within
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a time limit of 10 seconds, for the second group of instances. The RH was found
capable of producing high quality solutions faster than RMIPH in terms of
average computational time.

Table 7: Results obtained by the proposed heuristics in the second group of
instances

RMIPH (MPex) RH
Best LB Best LB UB Time Gap (%) UB Time Gap (%)

ct-2-4-1000-a1 43827 43979 10.00 0.35 43905 1.11 0.18
ct-2-4-1000-a2 41272 41357 10.00 0.21 41310 1.17 0.09
ct-2-4-1000-b1 50645 50687 10.00 0.08 50682 0.92 0.07
ct-2-4-1000-b2 50743 50759 10.00 0.03 50826 0.67 0.16
ct-2-4-1000-c1 64926 64926 0.15 0.00 64938 0.23 0.02
ct-2-4-1000-c2 64597 64597 0.09 0.00 64597 0.24 0.00
ct-2-4-2000-a1 85735 85874 10.00 0.16 85760 1.23 0.03
ct-2-4-2000-a2 86157 86276 10.00 0.14 86250 0.93 0.11
ct-2-4-2000-b1 102921 102927 10.00 0.01 102929 0.62 0.01
ct-2-4-2000-b2 101720 101739 10.00 0.02 101741 0.64 0.02
ct-2-4-2000-c1 154519 154533 0.09 0.01 154582 0.28 0.04
ct-2-4-2000-c2 156179 156192 0.10 0.01 156198 0.24 0.01
ct-2-4-4000-a1 169976 170207 10.00 0.14 170079 1.07 0.06
ct-2-4-4000-a2 172240 172403 10.00 0.09 172436 1.06 0.11
ct-2-4-4000-b1 205212 205245 10.00 0.02 205325 0.69 0.06
ct-2-4-4000-b2 203468 203475 4.16 <0.01 203477 0.73 <0.01
ct-2-4-4000-c1 259590 259603 0.16 0.01 259672 0.26 0.03
ct-2-4-4000-c2 257546 257559 0.11 0.01 257555 0.22 <0.01
Average 6.38 0.07 0.68 0.06

By observing the results of Tables 6 and 7, we argue that the proposed
solution approaches are highly effective in terms of solution quality and com-
putational time. These results play an important role with regard to (1) the
high quality of the solutions obtained that allows for great power minimization,
helping the development of energy-efficient virtualized server clusters, and (2)
the scalability of our optimization approach, which can be applied to large-scale
clusters supporting and consolidating thousands of services.

A promising way to improve even more the effectiveness of our solution
approach is to take advantage of the multi-thread architectures, where each
thread could run concurrently different versions of our algorithms within a given
time limit. We could then choose, for example, the best solution obtained among
all execution threads.

With these encouraging results obtained, we would like to analyze the be-
havior of the optimization approach based on real measurements of a real cluster
test-bed. As a case study, we can implement our proposed optimization for a
typical web cluster system, and evaluate the solution by running simulations to
measure energy savings while meeting service demands driven by actual time-
varying workloads, such as WorldCup’98 web traces available in [2].

5 Conclusions and Future Work

We have described a novel solution approach, based on column generation
techniques, for power-aware optimization in virtualized server clusters. Given
the computational results obtained, the proposed approach was found effective
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in providing high quality solutions in short amount of processing time, consid-
ering instances generated for large-scale heterogeneous server clusters.

In the future work, we plan to extend our approach to handle other types
of demands for the services in the virtualized cluster, which would include a
new dimension to the optimization problem. For example, in the case of specific
I/O-intensive services, it would be interesting to make run time decisions on
the best allocation of storage or RAM demands, which could also vary over
time. Also, there is a trend of improving energy efficiency in multi-core server
architectures by focusing on fine-grain power management [33] and dynamic
voltage and frequency scaling (and on/off mechanisms) at core level [8]. This
would allow for interesting configuration possibilities to consider in the power-
aware optimization problem.
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